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Abstract: Wolbachia-based mosquito control strategies have gained significant attention as a sus-
tainable approach to reduce the transmission of vector-borne diseases such as dengue, Zika, and
chikungunya. These endosymbiotic bacteria can limit the ability of mosquitoes to transmit pathogens,
offering a promising alternative to traditional chemical-based interventions. With the growing impact
of climate change on mosquito population dynamics and disease transmission, Wolbachia inter-
ventions represent an adaptable and resilient strategy for mitigating the public health burden of
vector-borne diseases. Changes in temperature, humidity, and rainfall patterns can alter mosquito
breeding habitats and extend the geographical range of disease vectors, increasing the urgency for
effective control measures. This review highlights innovations in Wolbachia-based mosquito control
and explores future directions in the context of climate change. It emphasizes the integration of
Wolbachia with other biological approaches and the need for multidisciplinary efforts to address
climate-amplified disease risks. As ecosystems shift, Wolbachia interventions could be crucial in
reducing mosquito-borne diseases, especially in vulnerable regions. AI integration in Wolbachia
research presents opportunities to enhance mosquito control strategies by modeling ecological data,
predicting mosquito dynamics, and optimizing intervention outcomes. Key areas include refining
release strategies, real-time monitoring, and scaling interventions. Future opportunities lie in advanc-
ing AI-driven approaches for integrating Wolbachia with other vector control measures, promoting
adaptive, data-driven responses to climate-amplified disease transmission.
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1. Introduction

Wolbachia spp. are a genus of intracellular alpha-proteobacteria widely distributed
among arthropods, including mosquitoes and some parasitic nematodes [1]. These bacteria
are primarily transmitted vertically, from imago to larvae passing from the ovaries to the
oocytes, but they can also be transmitted horizontally between species, especially among
closely related hosts [2], by predator–prey [3] or host–parasitoid interactions [4], by shared
plants [5] or other food resources [6], and by kleptoparasitism [7]. Discovered nearly a cen-
tury ago, Wolbachia has since been identified as one of the most widespread endosymbiotic
bacteria on Earth, infecting a vast array of insect species. The influence of Wolbachia on its
hosts is multifaceted, ranging from reproductive manipulations, such as cytoplasmic in-
compatibility, parthenogenesis, and male-killing, to mutualistic relationships that enhance
host survival and reproduction [8]. In mosquitoes, Wolbachia’s ability to manipulate repro-
duction and reduce the transmission of vector-borne pathogens has garnered significant
attention as a sustainable and innovative approach to disease control [8]. By interfering
with pathogen development within the mosquito, Wolbachia-based interventions are less
capable of transmitting viruses such as dengue, Zika, and chikungunya to humans [9].
This has led to the development of Wolbachia-based interventions, where populations of
infected mosquitoes are introduced into the environment to either suppress or replace wild
mosquito populations [9]. As global climate change continues to alter ecosystems, includ-
ing mosquito habitats, the dynamics of vector-borne disease transmission are changing.
Warmer temperatures, increased rainfall, and shifting humidity patterns can expand the
geographical range of mosquitoes, leading to the emergence of diseases in previously unaf-
fected regions [10]. Wolbachia-based strategies offer a promising solution to this growing
public health challenge, providing a biologically adaptive method for reducing mosquito
populations and their ability to transmit pathogens. This review delves into the current
applications of Wolbachia in mosquito control and explores future directions, particularly
in the context of climate change and its role in exacerbating mosquito-borne diseases. By
integrating Wolbachia-based strategies with AI, ecological, and climate data, we can better
understand how to optimize this approach in an evolving global landscape.

2. Wolbachia Strain and Mosquito Infection

Wolbachia is a genus of Gram-negative bacteria acting as endosymbiotic bacteria living
in many orders of insects and in other invertebrates [11,12]. It belongs to Alphaproteobac-
teria (Rickettsiales: Anaplasmataceae) and is predicted to infect more than 40% of insect
species [13,14]. The type species for the Wolbachia genus is Wolbachia pipientis, which
was first described in the mosquito Culex pipiens [15]. The related genera Anaplasma,
Ehrlichia, and Rickettsia typically have life cycles involving both an invertebrate vector and
a mammalian host, though some species are exclusively associated with invertebrates [16]
(Figure 1a). Phylogenetic analysis shows their close relationship with other intracellular
bacterial pathogens. However, unlike these related genera, Wolbachia does not infect verte-
brates. Wolbachia lives exclusively within host cells and spreads by altering the biology of
its host species [17]. Its primary transmission occurs through vertical inheritance via the
maternal cytoplasm, though horizontal transmission between insect species also contributes
to its prevalence [18–22]. Wolbachia Wolbachia typically invades invertebrate populations
by conferring reproductive or fitness advantages to infected individuals, and under favor-
able conditions this invasion can reach high prevalence within 1–2 years [23]. After its
release period it is possible to observe a complete population replacement (Figure 1b). The
potential use of Wolbachia in controlling mosquito-borne diseases has gained attention as
an environmentally friendly and cost-effective alternative to insecticide-based methods.
Wolbachia-induced cytoplasmic incompatibility (CI) was first proposed for Culex mosquito
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control in 1967 [24] with trials conducted in India in the 1970s [25]. CI is a common repro-
ductive manipulation that increases the proportion of Wolbachia-infected individuals in a
population. Wolbachia-infected females can mate with either uninfected males or males
infected with the same or a compatible Wolbachia strain [26] (Figure 1c). CI occurs when a
Wolbachia-infected male mates with a female that is either uninfected (unidirectional CI) or
infected with an incompatible strain (bidirectional CI) [27]. Essentially, if the male carries a
Wolbachia strain that is not present in his mate, the cross is incompatible [28].
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Figure 1. Wolbachia-based population replacement strategy for mosquito-borne disease control.
(a) Phylogenetic relationship of Wolbachia pipientis with other members of the Anaplasmataceae family,
showing its evolutionary ties to other intracellular bacterial pathogens; (b) Population replacement
strategy (PRS) graph, illustrating how the introduction of Wolbachia-based interventions can reduce
the population of uninfected individuals over time. The graph shows a projected decrease in the
population size of uninfected mosquitoes (dashed blue line) and the concurrent rise of Wolbachia-
based interventions (solid gray line) as a function of the release period; (c) Mechanism of transmission
blocking, where the spread of mosquitoes infected by Wolbachia strains capable of interfering with
pathogen replication effectively blocks pathogen transmission and reduces the spread of mosquito-
borne diseases. In panels (b,c), blue mosquitoes represent Wolbachia-infected individuals, while gray
mosquitoes represent uninfected individuals.

CI can also be exploited to favor the spread of Wolbachia strains capable of reduc-
ing the vector competence of suitable mosquito vectors. Wolbachia can affect viruses in
two ways: by reducing or delaying virus accumulation, and by decreasing or delaying
virus-induced host mortality. While many factors influence vector competence for trans-
mitting arboviruses in mosquitoes, the presence of Wolbachia may alter this competence by
affecting the mosquito’s susceptibility to viral infection [29–32]. After its discovery in Culex
pipiens [30], this endosymbiont has been found to be naturally harbored by various wild
mosquito populations including species that transmit different pathogens to humans [33]:

i. Aedes aegypti: carries viruses such as dengue, chikungunya, and Zika, as well as
nematodes such as filarial and mermithid [34].
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ii. Aedes albopictus: transmits viruses including dengue, chikungunya, Eastern equine
encephalitis, La Crosse, Zika virus, Venezuelan equine encephalitis virus and West
Nile, and Japanese encephalitis, along with filarial and mermithid nematodes [35].

iii. Aedes polynesiensis: spreads viruses such as Zika, dengue, and Ross River, along with
filarial nematodes [36].

iv. Culex pipiens species complex: vectors viruses such as West Nile, Usutu virus, Sindbis,
Eastern equine encephalitis, Venezuelan equine encephalitis, Japanese encephalitis, St.
Louis encephalitis, Ross River, Murray Valley encephalitis, and Rift Valley fever, as
well as filarial nematodes [35,37,38].

v. Anopheles stephensi: responsible for transmitting malaria parasites and O’nyong-nyong
virus [39].

There are many factors that determine vector competence for the transmission of ar-
boviruses in mosquitoes [29], but the presence of Wolbachia could influence this by altering
the mosquito’s susceptibility to viral infection. Studies have shown that naturally occurring
Wolbachia was present in 7–42% of Culex species analyzed, 0–30% of Aedes species, and
1–15% of Anopheles species [40–43]. Notably, Wolbachia is frequently detected in common
arbovirus vectors such as the Culex pipiens complex and Aedes species, including Ae. albopic-
tus, but not in Ae. aegypti. The establishment of Wolbachia in certain mosquito species can
be hindered by the native microbiome, which may explain its absence in some species [44].
However, the artificial horizontal transfer of certain Wolbachia strains in either uninfected or
already infected hosts has proven feasible [45]. Wolbachia can be used in various ways for
disease control. These include the following: (i) reducing vector populations by releasing
Wolbachia-infected males that are incompatible with females [46]; (ii) introducing Wolbachia
strains that cause fitness disadvantages, especially in seasonally variable environments [47];
and (iii) decreasing the ability of vectors to transmit diseases by introducing Wolbachia
strains that directly interfere with disease transmission and capability of spreading thanks
to CI [48,49]. Wolbachia interferes with viral replication within mosquitoes by inducing an
immune response that limits viral replication and competition for resources within host
cells [50–52]. Field trials have demonstrated the effectiveness of Wolbachia in reducing
dengue transmission, such as in areas where Wolbachia-infected Aedes aegypti were re-
leased [53,54]. There are an enormous diversity of Wolbachia strains in nature. Wolbachia has
a circular chromosome ranging from 1.08 Mb to 1.7 Mb and containing a high number of
mobile and repetitive elements [49]. The strains wMel and wMelPop wMelCS are naturally
found in D. melanogaster, wAu in D. simulans, and wInn in D. innubila. The strain wRi
is native to D. simulans, while wAlbB is present in Ae. albopictus, and wPip is found in
the Culex pipiens complex [17]. The mosquito species Ae. albopictus, Ae. polynesiensis,
and Ae. aegypti have been stably transfected with one or more of three Wolbachia strains
including wMel, wMelPop, wAlbB, and wPip [55,56]. Despite these successes, challenges
remain, such as the potential for resistance development in mosquito populations and the
ecological impacts of releasing Wolbachia-infected mosquitoes. Future research may focus
on new techniques for more efficient Wolbachia transfer and combining Wolbachia with
other vector control strategies [57,58].

3. The Impact of Climate Change on Mosquito-Borne Disease Emergence

Climate change is increasingly recognized as a critical driver of mosquito-borne
disease emergence and resurgence globally [59]. Rising global temperatures, altered precip-
itation patterns, and the increased frequency of extreme weather events are fundamentally
changing the distribution, abundance, and breeding cycles of mosquito vectors (Figure 2).

Temperature increases can accelerate mosquito spread, shorten viral incubation pe-
riods, and extend transmission seasons, particularly in regions previously unsuitable
for vector survival [60]. Additionally, variability in precipitation affects the availability
of mosquito breeding sites, as both excessive rainfall and drought can create conditions
favorable for mosquito proliferation [60]. Consequently, viral fevers such as dengue, chikun-
gunya, and West Nile virus are expanding into new geographic areas, highlighting the
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growing need for enhanced surveillance and control strategies. These environmental shifts
have also facilitated the spread of viruses into new regions, creating conditions conducive
to the emergence of diseases such as those determined by Zika virus (ZIKV), dengue virus
(DENV), chikungunya virus (CHIKV), yellow fever virus (YFV), and Oropouche virus
(OROV) [61–65]. Focusing on these pathogens, rather than others, reflects their signifi-
cant epidemiological impact and their strong association with climate-sensitive mosquito
vectors. ZIKV, a member of the Flaviviridae family, gained global attention during the
2015–2016 outbreaks in South America, particularly in Brazil [65]. Before this, ZIKV had
caused sporadic outbreaks in Africa and Southeast Asia, but climate change, particularly
rising temperatures and altered precipitation patterns, played a crucial role in expanding
the habitat of Aedes aegypti, ZIKV’s primary vector, into new regions [65]. The severe
clinical picture of ZIKV, especially in neonates linked to microcephaly and other birth de-
fects, underscored the urgent need for adaptive strategies to mitigate the effects of climate
change on vector-borne diseases [66]. Similarly, dengue virus, also in the Flaviviridae family,
has experienced a resurgence in regions where the disease was previously controlled or
where it was once rare or nonexistent. DENV is the most widespread mosquito-borne virus,
exposing billions of people at risk [67]. Climate change contributes to the resurgence of
dengue by enhancing mosquito survival rates and shortening the time required for the
viral life cycle in mosquitoes [68]. Rainfall variability also creates ideal breeding conditions
for Ae. aegypti and Ae. albopictus, the primary vectors of dengue, through periods of heavy
rainfalls followed by droughts. Recent outbreaks have occurred in temperate regions,
such as southern Europe and parts of the United States, where dengue was previously
uncommon, highlighting the role of global warming in driving the northward expansion of
vector populations [67]. CHIKV, a member of the Togaviridae family, emerged as a global
health threat in 2004, spreading beyond its endemic areas in Africa and Asia to cause large
outbreaks in the Indian Ocean islands, Europe, and the Americas [61]. The rapid spread of
CHIKV is strongly linked to the adaptability of Aedes aegypti and Aedes albopictus, which
thrive in new climatic conditions [69]. The virus has now become endemic in parts of the
Americas, leading to regular outbreaks in regions where it was once unknown [69]. YFV,
another Flaviviridae member, has experienced significant re-emergence in parts of Africa
and South America [56]. Historically controlled by vaccination, YFV is making a resurgence
due to weakened health infrastructures, population growth, deforestation, and climate
change [64]. The increasing range of Aedes aegypti, driven by rising temperatures and chang-
ing rainfall patterns, has allowed YFV to resurge in regions such as Brazil, with outbreaks
extending beyond the Amazon basin into areas with no recent history of yellow fever trans-
mission [64]. These outbreaks, often in densely populated urban centers, underscore the
importance of addressing climate change as a driver of mosquito-borne disease emergence,
particularly in vulnerable regions with limited healthcare access [64]. OROV, a member of
the Peribunyaviridae family, is a neglected mosquito-borne pathogen historically confined
to the Amazon basin [63]. Recently, however, OROV has expanded beyond the Amazon,
spreading into new regions of South America, including urbanized areas [63]. OROV is
primarily transmitted by the Culicoides paraensis midge, but there are concerns about its
potential to be transmitted by Culex mosquitoes. Climate change, including warmer tem-
peratures, habitat destruction, and changing rainfall patterns, is likely driving the vector’s
movement into new ecosystems, contributing to OROV’s rapid epidemic spread. This
rapid expansion highlights the need for robust surveillance and control measures, as OROV
poses a significant public health threat with the potential for large urban outbreaks in
previously unaffected areas [63]. The geographical range of Aedes aegypti and Aedes albopic-
tus is expanding northward due to global warming. Historically confined to tropical and
subtropical regions, these mosquitoes are now establishing populations in temperate zones,
such as parts of Europe and North America [70]. Additionally, research has demonstrated
that Wolbachia infections in mosquitoes are sensitive to temperature variations, which can
influence Wolbachia density, transmission efficiency, and its pathogen-blocking capacity.
For instance, studies indicate that fluctuating temperatures can impact the rate of DENV
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infection in mosquitoes and their ability to transmit the virus, as seen in settings where
temperature oscillates around a mean. Despite these fluctuations, Wolbachia has shown
a consistent ability to reduce DENV infection and transmission potential across various
temperature ranges, supporting its robustness as a biocontrol tool in certain environments,
such as those in Cairns, Australia [71]. However, these findings underscore the importance
of evaluating Wolbachia efficacy under field-relevant temperature conditions for different
regions, as warmer or more variable climates may alter outcomes. A more comprehensive
approach that considers the local environmental factors and the variability in Wolbachia
performance across different temperature regimes will help clarify how climate change
could influence mosquito-borne disease risks.
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Figure 2. The impact of climate change on mosquito-borne disease transmission dynamics. This
figure presents a model-based simulation rather than real-world data. It illustrates (a) temperature
increase over time (2000–2025), showing a gradual rise in global average temperatures, which can
extend mosquito activity and viral transmission periods; (b) precipitation variability over time,
illustrating fluctuations in rainfall patterns that influence mosquito breeding habitat availability;
(c) mosquito population growth, representing the projected increase in mosquito populations driven
by climatic changes over the same period; (d) increase in disease cases over time, correlating the rise in
global temperatures and altered precipitation patterns with the increase in reported mosquito-borne
disease cases worldwide.

4. The Role of Artificial Intelligence in Wolbachia Research and Future Challenges

Artificial intelligence (AI) is rapidly transforming various fields of science and tech-
nology, including biological research [72]. AI’s capacity to analyze large datasets, identify
complex patterns, and make accurate predictions enhances our understanding of intricate
biological systems, such as the relationship between Wolbachia and its arthropod hosts [72].
AI might play a central role in three key areas of Wolbachia research: genomic data analysis,
modeling host–Wolbachia interactions, and ecological and evolutionary modeling (Table 1).
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Table 1. AI applications in Wolbachia research, outlining key research areas, challenges, and future
opportunities.

Area of Research AI Application Challenges Future Opportunities

Genomic data analysis

AI for identifying genetic
variants, functional
annotation, and
protein–protein interactions.

Handling complex and large
genomic datasets.

Improving prediction
accuracy for gene function
and expression, especially for
noncoding regions.

Best models effectively
capture gene interactions and
functions, which can be
enhanced by more refined
data integration through AI.

Modeling host–
Wolbachia interactions

AI models for simulating
Wolbachia effects on host
physiology, behavior,
and fitness.

Incomplete data on
host–microbe interactions,
potential
resistance development.

Optimizing Wolbachia-based
intervention strategies for
disease control.

Models that incorporate
feedback mechanisms and
adaptability are most effective;
AI can enhance by improving
predictive modeling of
host–pathogen interactions.

Ecological and
evolutionary modeling

AI models to predict Wolbachia
spread, and its impact on host
population dynamics.

Integrating diverse factors
such as climate, ecology, and
evolution; ensuring
interpretability of models.

Modeling “what-if” scenarios
for future environmental
changes and interventions.

Models with high
interpretability and
adaptability perform best; AI
can improve through better
integration of complex
ecological variables.

Species distribution modeling

AI improves accuracy of
species distribution models
(SDMs) using techniques such
as neural networks and
ensemble learning.

Variable success in predicting
population fitness and
genetic diversity.

Enhancing the use of satellite
imagery and real-time data for
more accurate
habitat predictions.

Effective models use ensemble
techniques; AI can boost
accuracy with adaptive
learning to incorporate
real-time environmental data.

Climate change and
ecosystem dynamics

AI to predict effects of climate
change on ecosystems and
species distributions.

Managing large and
heterogeneous datasets;
ethical concerns regarding
data use.

Developing tools for real-time
monitoring and better
integration of satellite,
ecological, and genetic data
for ecosystem management.

Models that synthesize
multiple data sources show
promise; AI can enhance
through improved data
harmonization and
predictive analytics.

In genomic analysis, AI enables the rapid and precise identification of genetic variants,
functional annotation of genes, and prediction of protein–protein interactions, signifi-
cantly accelerating the understanding of Wolbachia’s molecular biology [73]. Regarding
host–Wolbachia interaction modeling, AI provides tools to simulate and predict Wolbachia’s
effects on host physiology, behavior, and fitness. These models offer valuable insights into



Viruses 2024, 16, 1868 8 of 16

mechanisms such as reproductive manipulation, cytoplasmic incompatibility, and Wol-
bachia-mediated pathogen resistance. In the realm of ecological and evolutionary modeling,
AI is revolutionizing predictions of Wolbachia’s spread in arthropod populations and its
impact on host population dynamics. These models integrate various factors influencing
Wolbachia–host dynamics, including (i) environmental variables such as temperature, hu-
midity, and resource availability, which affect both Wolbachia and its hosts; (ii) ecological
interactions, such as competition, predation, and other biotic factors that shape arthro-
pod communities; (iii) evolutionary processes such as mutation rates, natural selection,
genetic drift, and gene flow that shape the evolution of Wolbachia and its hosts; (iv) specific
Wolbachia features, including transmission rates, effects on host fitness, and cytoplasmic in-
compatibility; and (v) anthropogenic factors such as disease control interventions, land-use
changes, and other human impacts on ecosystems.

Moreover, AI offers new possibilities for exploring “what-if” scenarios and optimizing
intervention strategies. Researchers can use these models to simulate future scenarios,
ranging from climate variations to changes in environmental management practices, as-
sessing their impact on Wolbachia–host dynamics. As research advances, AI is poised to
play an increasingly central role in disease control, not only enhancing our understand-
ing of Wolbachia–host interactions but also enabling manipulation of these relationships
to develop innovative solutions for environmental sustainability. These advances open
new avenues for scientific inquiry, offering creative and sustainable solutions to complex
biological challenges.

4.1. AI-Driven Genomic Data Analysis

AI has revolutionized genomic data analysis by providing tools capable of handling
the complexity and volume of genomic information [74]. AI algorithms can identify pat-
terns and make predictions that traditional statistical methods might overlook. In genomic
data analysis, AI has facilitated advances in key areas such as sequence alignment, variant
calling, gene expression analysis, and the interpretation of noncoding regions [75]. Se-
quence alignment, a crucial process for identifying similarities and differences between
DNA sequences, has greatly benefited from AI. Deep learning models, including convo-
lutional neural networks (CNNs), have enhanced the accuracy and speed of sequence
alignment, reducing computational costs and time. This has proven particularly valuable
for large-scale projects in population genomics and personalized medicine. For exam-
ple, Rakotonirina et al. [75 used Matrix-Assisted Laser Desorption Ionization–Time of
Flight (MALDI–TOF) in combination with CNNs to process spectral data and improve
the detection of Wolbachia in Aedes aegypti, increasing the efficiency of identifying infected
mosquitoes. In variant calling, AI-driven approaches have transformed the identification
of genetic variations. Zhu et al. demonstrated the use of deep learning for refining somatic
variant calling in cancer sequencing data, while Singh et al. introduced PEPPER-Margin-
DeepVariant, a haplotype-aware variant calling pipeline that produces state-of-the-art
results using nanopore data [76]. These innovations highlight the growing role of AI in
genomic precision. Gene expression analysis involves measuring the activity of thousands
of genes to capture a global picture of cellular function. AI algorithms can efficiently
process high-dimensional data from RNA sequencing (RNA-seq) and single-cell RNA
sequencing (scRNA-seq), identifying expression patterns that indicate disease states or
treatment responses. Techniques such as autoencoders and recurrent neural networks
(RNNs) have been employed to impute missing values and classify cells by expression
profiles. In the realm of genetic control strategies, Iftikhar et al. explored Wolbachia-infected
male mosquitoes as a method to suppress Aedes aegypti populations. Using AI-supported
mathematical models, they accurately forecasted disease control outcomes by simulating
different mating scenarios and identifying key parameters critical for implementation.
Their findings highlight the importance of theoretical models in designing cost-effective
strategies for future experimental applications. AI has also been instrumental in the inter-
pretation of Wolbachia toxin–antidote protein functions. Beckmann et al. used evolutionary
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algorithms to model cytoplasmic incompatibility (CI) systems in insects, focusing on the
evolution of toxin–antidote (TA) systems. By simulating protein string evolution, their
research provided insights into how nuclear localization signals (NLS) and Type IV secre-
tion system (T4SS) signals influence the evolution of CI mechanisms. Their study offers a
framework for understanding the molecular evolution of CI systems in nature. A significant
portion of the human genome consists of noncoding regions, which play regulatory roles
in gene expression. AI has been essential in predicting the functions of these regions by
integrating data on chromatin accessibility, histone modifications, and transcription factor
binding sites. For instance, algorithms such as DeepSEA use deep learning to predict the
impact of noncoding variants on gene expression and disease phenotypes [77,78]. While
extensive studies have been conducted on the gene structures of well-known species such
as E. coli, fewer resources exist for newly sequenced genomes such as Wolbachia. Gene
prediction models trained on one species may not accurately reflect the characteristics of
other prokaryotic organisms. This challenge was encountered when predicting genes in the
Wolbachia genome. A neural network-based gene prediction model was developed, using
coding sequences as a positive dataset and intergenic regions as a negative dataset. The re-
silient propagation learning algorithm demonstrated superior performance on a multi-layer
perceptron neural network, consisting of 64 input nodes, 10 hidden nodes, and 1 output
node. Additionally, Etebari et al. [78] characterized the miRNA profiles in Aedes aegypti
cells with and without Wolbachia infection. They observed a general increase in small RNAs
(18–28 nucleotides) in both cell compartments of infected cells, identifying specific miRNAs
that were either induced or suppressed by Wolbachia infection. The study also revealed
changes in piRNA abundance, offering promising insights into host–endosymbiont interac-
tions and how Wolbachia manipulates the host miRNA machinery to maintain its replication.
MiRanalyzer, a web-based tool using machine learning (Support Vector Machine) to predict
new miRNA candidates, was employed to analyze high-throughput sequencing data. The
tool demonstrated a high level of accuracy, even when using genomic references from
proxy species.

4.2. Modeling Host–Wolbachia Interactions

Understanding the interactions between Wolbachia and its hosts is essential for devel-
oping effective disease control strategies, such as using Wolbachia-based interventions to
combat dengue and Zika viruses [79]. AI has been instrumental in advancing the modeling
of Wolbachia–host interactions by allowing researchers to analyze large datasets on infection
prevalence, host fitness, and transmission rates. Machine learning models predict how
Wolbachia spreads, its impact on host reproduction, and potential resistance development.
For example, Faiz et al. [80] developed a computational framework using a Bayesian reg-
ularization backpropagation neural network (BRB-NN) to model Wolbachia-infected and
uninfected mosquito populations, accounting for incomplete cytoplasmic incompatibility
and imperfect maternal transmission. The model demonstrated how fractional order deriva-
tives and reproduction rates of Wolbachia-based interventions affect population dynamics.
Another study assessed the effectiveness of releasing Aedes aegypti mosquitoes infected
with the wMel strain in Rio de Janeiro, Brazil [81–83]. Over 67 million mosquitoes were
released to reduce dengue and chikungunya incidence. While wMel presence was lower in
areas with high disease prevalence, there was a 38% reduction in dengue cases and 10% in
chikungunya. Although wMel introgression was not complete, these results suggest even
intermediate levels of Wolbachia can reduce disease incidence, offering important insights
for future release programs.

4.3. Ecological and Evolutionary Modeling

AI has additionally revolutionized ecological and evolutionary modeling by providing
tools to handle complex, non-linear systems with multiple interacting components. These
models are crucial for understanding species interactions, biodiversity, and ecosystem
dynamics, particularly in the context of environmental change [84,85]. AI enhances species
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distribution models (SDMs), which capture ecological niches and predict suitable habitats.
However, SDMs show variable predictive success, with better performance for species
presence (~53%) than for abundance, population fitness, or genetic diversity. This indicates
the need for SDMs to be treated as hypotheses to be tested with independent data, especially
in conservation planning [85,86]. AI techniques, such as neural networks and ensemble
learning, improve the accuracy of these models by identifying complex relationships
between species and their environments [86]. MaxEnt, a machine learning method, has
been widely used for species distribution modeling with presence-only data [86]. For
instance, a study on the invasive mosquito species Aedes albopictus in Pennsylvania used
MaxEnt to evaluate environmental and neighborhood factors, achieving a 74.7% accuracy
in predicting mosquito presence. This model highlighted how environmental variables
explain suburban and rural conditions, while neighborhood factors better predict urban
patterns. In addition, AI-based large language models (LLMs) have proven their ability to
efficiently manage ecological data, including species distribution, conservation needs, and
the invasion of alien species such as Ae. albopictus, where manual processing is a significant
challenge [86]. On the other hand, van Hoek et al. recently highlighted the potential role of
LLM-based agents into prevention and control of infectious disease outbreaks [87,88]. The
concomitant deployment of multiple specific LLM-based agents in the context of ecological
and epidemiological data might the enhance the efficiency of data management.

AI also plays a crucial role in modeling the effects of climate change on ecosystems.
By integrating data from satellite imagery, climate models, and ecological surveys, AI can
predict how climate change will alter species distributions, community composition, and
ecosystem services. Ogunlade et al. [85] modeled interactions between mosquito popu-
lations infected with different Wolbachia strains, showing that introducing a single strain
with optimal traits—such as high maternal transmission and cytoplasmic incompatibility—
may be more effective than using multiple strains. While AI’s potential in ecological and
evolutionary modeling is immense, challenges remain, including managing large and
heterogeneous datasets, ensuring model interpretability, and addressing ethical considera-
tions in environmental management. Future advancements will require interdisciplinary
collaboration and responsible research practices to fully harness AI’s potential in Wolbachia
research and disease control.

5. Safety and Ethical Considerations in the Wolbachia-Based Mosquito Control Strategy

While the Wolbachia-based strategy for mosquito control holds significant promise for
combating vector-borne diseases, it raises several safety and ethical concerns that warrant
careful consideration [89–91]. One major safety concern is ecological disruption. It is im-
portant to distinguish between two key approaches: the population replacement strategy,
which introduces Wolbachia into wild mosquito populations, and the Incompatible Insect
Technique (IIT), which reduces egg fertility in wild populations without interfering with
infection types. In IIT, male mosquitoes infected with Wolbachia are released, and since
these males are incompatible with wild-type females, no viable offspring are produced.
Importantly, their sperm do not harbor Wolbachia, thus avoiding horizontal transfer of the
bacteria. Introducing Wolbachia through the population replacement strategy could have
unforeseen ecological consequences. Wolbachia can influence mosquito fitness and com-
petitiveness, potentially disrupting existing species interactions, which may impact food
webs or lead to the emergence of more resilient vector species [89–91] (Figure 3). Therefore,
different risk assessments and monitoring strategies are required for each method.

Another safety concern involves horizontal gene transfer. Although unlikely, the
possibility of Wolbachia genes transferring to other organisms, including mosquitoes or
even humans, cannot be entirely ruled out, and such transfers could have unpredictable
and potentially harmful consequences [92]. Additionally, there is the risk of the evolution
of resistance. As with any intervention targeting a biological organism, the widespread use
of Wolbachia could drive the evolution of resistance in mosquito populations, potentially
rendering the strategy ineffective over time. Unintended impacts on non-target organisms
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also present a concern. While Wolbachia-based interventions primarily target specific disease
vectors, there is a risk of unintended impacts on non-target organisms, such as predators
that rely on mosquitoes as a food source [82]. In terms of ethical concerns, informed consent
is a critical issue. Deploying Wolbachia-based interventions on a large scale raises questions
about whether communities are fully informed about the potential risks and benefits
associated with the intervention. Community engagement is another crucial ethical aspect.
The successful implementation of this strategy requires robust community engagement
and dialogue to address concerns, build trust, and ensure that the intervention aligns with
local values and priorities. Ensuring equitable access to the benefits of this technology,
particularly for communities disproportionately burdened by mosquito-borne diseases, is
also crucial. Additionally, there is the potential for misuse or unintended consequences, as
with many technologies, making it essential to establish safeguards and ethical guidelines
to prevent the malicious use of Wolbachia-based strategies. Addressing these safety and
ethical concerns requires a multifaceted approach. This includes conducting comprehensive
ecological risk assessments before and during field trials to evaluate potential impacts
on both target and non-target organisms. Implementing robust monitoring programs
to track the spread of Wolbachia, assess its long-term effects, and detect any unintended
consequences is also necessary. Promoting transparency and open communication with the
public about the potential risks and benefits of the technology is essential. Developing clear
ethical guidelines and regulations governing the research, development, and deployment of
Wolbachia-based strategies will help ensure the responsible and ethical use of this promising
technology for global health.
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Figure 3. Key safety and ethical considerations in Wolbachia-based mosquito control. This diagram
outlines the major concerns and necessary precautions surrounding the implementation of Wolbachia-
based strategies. The potential risks include ecological disruption, horizontal gene transfer, non-target
impacts, and resistance evolution. These risks require proactive ecological risk assessments and
robust monitoring programs to ensure safety. Ethical considerations are centered around informed
consent, equitable access to the benefits of the intervention, community engagement, and potential
misuse. Public transparency and dialogue, alongside the development of clear ethical guidelines and
regulations, are essential to addressing these concerns.

6. Discussion

The integration of Wolbachia-based approaches into mosquito control strategies repre-
sents a promising avenue for the mitigation of vector-borne diseases such as dengue, Zika,
and chikungunya [93]. As highlighted throughout this review, innovations driven by AI
have played a transformative role in advancing genomic data analysis, host–Wolbachia
interaction modeling, and ecological and evolutionary predictions [94]. These technologi-
cal advances have enabled the field to move from conceptual understanding to applied
interventions with tangible outcomes, such as reduced disease incidence in areas where
Wolbachia-based interventions have been released. AI has facilitated new ways to model
complex biological systems, allowing researchers to predict Wolbachia spread and evaluate
its effects on mosquito populations with greater accuracy [81]. In genomic data analysis, AI
tools have revolutionized variant calling and gene expression profiling, contributing to our
understanding of Wolbachia’s molecular biology and its manipulation of host species. This
is particularly crucial in a rapidly changing climate, where dynamic environmental factors
affect both mosquito and Wolbachia fitness. AI-based ecological models, such as those using
MaxEnt, have provided more reliable predictions about how Wolbachia-based interven-
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tions might thrive under different environmental conditions, which is key to long-term
success [91]. However, alongside these innovations come significant challenges. As we
have seen, the introduction of Wolbachia into natural mosquito populations is not without
risk. Ecological disruptions, such as altered species interactions or the emergence of more
resilient vectors, cannot be overlooked [90]. Furthermore, Wolbachia infection may not
be suitable for all vector species, as some mosquitoes show resistance to infection, and
the ability to efficiently mass-rear these mosquitoes under laboratory conditions remains
a logistical challenge. These limitations, combined with the financial costs of running
large-scale control programs, must also be considered. The potential for horizontal gene
transfer, while deemed unlikely, remains a concern with unpredictable consequences. Simi-
larly, the evolution of resistance in mosquito populations poses a long-term risk that could
undermine the effectiveness of Wolbachia-based strategies. Continuous monitoring and
adaptation will be necessary to address these potential challenges, especially as climate
change alters the ecosystems in which these interventions are deployed [92]. Another
key issue is the ethical implications of deploying Wolbachia-based interventions at scale.
Ensuring that communities are informed and engaged throughout the process is critical for
maintaining public trust and acceptance. Informed consent and transparency about both
the benefits and risks of such interventions are essential. Equitable access to the technology
is also important, particularly for regions that are disproportionately affected by mosquito-
borne diseases but may lack the resources or infrastructure to implement Wolbachia-based
programs effectively. These ethical considerations underscore the importance of a socially
responsible and inclusive approach to the development and deployment of this technology.
Looking forward, the future directions for Wolbachia-based mosquito control are closely
linked to ongoing advances in AI and related technologies. The ability of AI to process
vast amounts of data, model complex systems, and simulate future scenarios will continue
to be crucial for optimizing Wolbachia deployment strategies. For instance, models that
incorporate climate change projections can help to predict how shifts in temperature, pre-
cipitation, and habitat availability will impact both mosquitoes and Wolbachia, allowing for
better planning and adaptation of intervention strategies [93]. AI’s capacity for continuous
learning and improvement will be essential in refining these models as new data becomes
available. Furthermore, AI can play a pivotal role in the development of more targeted
approaches [88]. By integrating genomic, ecological, and environmental data, researchers
can refine release strategies to focus on regions where the introduction of Wolbachia will
have the greatest impact, while minimizing risks to non-target species and ecosystems. For
example, future studies could explore the use of AI to predict the optimal release times and
locations based on environmental variables, mosquito population dynamics, and human
activity patterns, thus maximizing the efficacy of Wolbachia-based interventions [94,95]. In
addition to technological advancements, it is imperative that researchers and policymak-
ers work together to establish clear ethical guidelines and regulatory frameworks for the
use of Wolbachia-based strategies. As these interventions become more widespread, the
establishment of global standards for risk assessment, monitoring, and public engagement
will ensure that the technology is used responsibly and sustainably. The involvement of
international organizations, such as the World Health Organization (WHO), in developing
these frameworks will be essential for harmonizing efforts across different regions and
ensuring that all communities benefit from the advancements in Wolbachia-based mosquito
control. By balancing scientific ambition with social responsibility, we can harness the full
potential of Wolbachia to create sustainable, long-term solutions for vector-borne disease
control in a rapidly changing world.
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