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Abstract
Background Computational modelling of disease spread is crucial for understanding the dynamics of infectious 
outbreaks and assessing the effectiveness of control measures. In particular, network-based models for disease 
spreading offer detailed, granular insights into heterogeneous interactions and enable dynamic simulation of 
intervention strategies. Therefore, they offer valuable insights into the factors influencing disease spread, enabling 
public health authorities to develop effective containment strategies. Vaccination is among the most impactful 
interventions in controlling disease spread and has proven essential in preventing the spread of infectious diseases 
such as measles. However, recent trends indicate a concerning decline in the fraction of vaccinated individuals in 
various populations, increasing the risk of outbreaks.

Methods In this study, we utilize computational simulations on graph-based models to analyze how vaccination 
affects the spread of infectious diseases. By representing populations as networks in which individuals (nodes) are 
connected by potential spread pathways (edges), we simulate different vaccination coverage scenarios and assess 
their impact on disease spread. Our simulations incorporate high and low vaccination coverage to reflect real-world 
trends and explore various conditions under which disease spread can be effectively blocked.

Results The results demonstrate that adequate vaccination coverage is critical for halting outbreaks, with a marked 
reduction in disease spread observed as the fraction of vaccinated individuals increases. Conversely, insufficient 
vaccination rates lead to widespread outbreaks, underscoring the importance of maintaining high vaccination 
levels to achieve herd immunity and prevent resurgence. These findings highlight the vital role of vaccination as a 
preventative tool and emphasize the potential risks posed by declining vaccination rates.

Conclusion This study provides a deeper understanding of how vaccination strategies can mitigate the spread of 
infectious diseases and serves as a reminder of the importance of maintaining robust immunization programs to 
protect public health.
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Introduction
The COVID-19 pandemic has shown that control of 
spread of infectious diseases requires the design and 
implementation of complex strategies of public health 
intervention [1]. These lessons may be relevant to control 
the spread of other diseases like measles [1, 2].

In this complex landscape, computational simulations 
grounded in mathematics and computer science [3] allow 
to dynamically observe the spread of the diseaseand pin-
point variables crucial for altering disease progression [4] 
such as guiding vaccination strategies and predicting dis-
ease onset and spread within populations [5].

The importance of studying infectious disease vacci-
nation strategies and the impact of vaccination coverage 
is crucial; effective vaccination can significantly miti-
gate the spread of highly infectious diseases and prevent 
large-scale outbreaks [4, 6].

Computational modeling is crucial in this endeavor 
because it allows for the simulation of various scenar-
ios and interventions, providing insights into potential 
future outcomes without the need for real-world test-
ing. Specifically, network-based approaches are advan-
tageous as they realistically model how diseases spread 
through social connections and geographical proximity. 

By incorporating the structure of human interactions 
into simulations, network models can predict localized 
outbreaks and the effectiveness of targeted vaccination 
campaigns, thus enhancing the precision of public health 
responses [7–10]. These models not only forecast out-
breaks but also evaluate the impact of vaccination strate-
gies on heterogeneous population [11, 12] as represented 
in Fig. 1.

In this work, we particularly examine how vaccina-
tion coverage influences the prediction and management 
of potential outbreaks of Measles [13–15]. Measles, a 
highly infective virus with a basic reproduction number 
(R0) between 12 and 18, serves as a key case study [16]. 
Despite an effective vaccine, recent declines in vaccination 
rates have led to a resurgence of measles globally [17, 18] 
highlighting the vital need to maintain high vaccination 
coverage and continuous genetic surveillance to prevent 
outbreaks [19–21]. The virus, belonging to the genus Mor-
billivirus, is characterized by its high basic reproduction 
number (R0) of 12–18, making it one of the most infectious 
human pathogens [16]. Recent years have seen a resurgence 
of measles outbreaks in various parts of the world, largely 
attributed to declining vaccination rates [17]. This empha-
sizes the critical need for maintaining high vaccination 
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coverage and uninterrupted genetic surveillance to monitor 
and mitigate the risk of outbreaks [18].

For example, studies have shown that supplemen-
tal immunization can drastically reduce measles risk in 
highly vaccinated communities [22]. Furthermore, tar-
geted vaccination efforts in susceptible regions can curb 
the spread of outbreaks, emphasizing the critical role of 
computational approaches [4, 13, 15, 23, 24].

By integrating computational models with a network-
based approach, this work aims to refine our understanding 
of disease dynamics and enhance the strategic deployment 
of vaccinations. We use a network-based model to analyze 
the impact of vaccination coverage on the spread of mea-
sles. This approach allows us to simulate how the disease 
transmits through various types of interpersonal connec-
tions and assess the effectiveness of vaccination programs 
in curbing its spread. By modeling different scenarios, we 
can observe how changes in vaccination coverage affect the 
dynamics of the disease across diverse population struc-
tures. This method provides a robust framework for under-
standing the potential benefits of increasing vaccine uptake 
and its crucial role in public health strategies.

To underscore the importance of vaccination, we uti-
lize various network models to reflect different commu-
nity interactions and social behaviors. These models help 
demonstrate the significant role that vaccination plays in 
controlling measles outbreaks under varying conditions. 
Our findings consistently indicate that vaccination is a 
key factor in mitigating the spread of measles. By pre-
senting these different scenarios, the research highlights 
how essential widespread immunization is, regardless 
of the community structure or the network model used. 
This reinforces the universal value of vaccination cam-
paigns in preventing the spread of infectious diseases like 
measles.

Main contribution of this paper are:

1. Developing a computational model that simulates the 
impact of vaccination on infectious disease spread 
across different network structures.

2. Demonstrating that increasing vaccination coverage 
consistently reduces disease spread potential across 
various network topologies.

3. Showing that vaccination effectiveness is 
independent of specific network structures or disease 
characteristics, serving as a universal mechanism for 
mitigating disease spread across different population 
contact patterns.

4. Providing quantitative evidence through simulations 
that supports the critical role of maintaining high 
vaccination coverage for controlling outbreaks, with 
significant implications for public health policy and 
intervention strategies.

The paper is organized as follows: the Methods section 
describes the computational modeling approach used, 
including the network models used and the simulation 
framework implementation. The Results section pres-
ents the findings on the impact of vaccination rates on 
virus diffusion and the implementation of vaccination 
campaigns across different network structures. The Dis-
cussion interprets these results in the context of public 
health strategies and disease control, while the Conclu-
sion summarizes the key findings and their implications 
for vaccination policies.

Materials and methods
The Italian National Institute of Health (known as Isti-
tuto Superiore di Sanità (ISS)) publishes periodic surveil-
lance reports on measles cases ( h t t p  s : /  / w w w  . e  p i c  e n t  r o . i  s 
s  . i t  / m o  r b i l  l o  / b o l l e t t i n o), collected through the  I n t e g r a t e d 
Measles-Rubella Surveillance System, established in 2007 
to monitor epidemiological situation of measles in accor-
dance with the “National Plan for the Elimination of Mea-
sles and Congenital Rubella 2010–2015” ( h t t p  s : /  / w w w  . e  p 
i c  e n t  r o . i  s s  . i t  / m o  r b i l  l o  / P i  a n o  E l i m  i n  a z i  o n e  M o r b  i l  l o R  o s o  l 
i a C  o n  g e n i t a 2 0 1 0 - 2 0 1 5), and coordinated by the Depart-
ment of Infectious Diseases at the ISS, which also man-
ages the MoRoNET network of accredited laboratories to 
ensure laboratory confirmation and genotyping of cases. 

Fig. 1 Contact-based model representation of disease spread in a population. Blue nodes represent susceptible or recovered individuals, while yellow 
nodes indicate infected individuals. The model demonstrates how disease spread is influenced by both the characteristics of the pathogen and the 
structure of the contact network

 

https://www.epicentro.iss.it/morbillo/bollettino
https://www.epicentro.iss.it/morbillo/bollettino
https://www.epicentro.iss.it/morbillo/PianoEliminazioneMorbilloRosoliaCongenita2010-2015
https://www.epicentro.iss.it/morbillo/PianoEliminazioneMorbilloRosoliaCongenita2010-2015
https://www.epicentro.iss.it/morbillo/PianoEliminazioneMorbilloRosoliaCongenita2010-2015
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However, significant pre-processing was required to 
make these data usable for research purposes. The origi-
nal reports are published in PDF format, which poses 
several challenges as some key details are embedded in 
narrative sections, while others are presented in tabular 
format with different layouts depending on the topics. In 
addition, inconsistencies in terminology and formatting 
required careful handling to ensure data uniformity. To 
address these issues, we implemented a multi-step data 
extraction and structuring process. First, we converted 
the PDF files into machine-readable text using optical 
character recognition (OCR) when necessary. We then 
applied automated parsing techniques to extract tabular 
data, leveraging regular expressions and pattern recogni-
tion to correctly identify relevant fields. For unstructured 
text, we employed natural language processing (NLP) 
methods to extract key epidemiological details, such as 
case demographics, vaccination status, and clinical out-
comes. Given the variability in data presentation across 
reports, we performed manual validation to correct mis-
classifications, resolve ambiguities, and standardize ter-
minology. Finally, we structured the extracted data into a 
coherent format, ensuring consistency across all records. 
The resulting dataset includes information on key epi-
demiological parameters such as demographic details, 
including the age and sex of reported cases, as well as 
geographic information down to the regional level. Clini-
cal details, such as the presence of comorbidities, and 
vaccination status are also recorded, specifying whether 
individuals received the first dose, second dose, or no 
dose of measles vaccine. In addition, the dataset contains 
information on case severity, including the number of 
individuals who required hospitalization or emergency 
medical care.

To enhance accessibility, we have structured the data-
set into separate folders, each corresponding to a specific 
surveillance year, named sequentially from the first to the 
last available year. Each folder contains: (i) a subfolder 
named “bulletins”, which includes all the PDF bulletins 
published in that year; (ii) a subfolder named “surveil-
lance”, which is organized into multiple CSV files, each 
corresponding to a specific epidemiological characteris-
tic extracted from the text. These files provide data on the 
national and regional trends of measles cases, as well as 
information categorized by age group and the presence of 
comorbidities. Data used in this study covers the period 
from 2014 to September 2024, with the latest update 
available at the time of submission of the work. However, 
the dataset continues to be updated on a monthly basis, 
ensuring that the latest surveillance data remain available 
at  h t t p  s : /  / t i n  y u  r l .  c o m  / m e a  s l  e s - d a t a - i t a. Furthermore, 
to facilitate real-time data exploration and visualization, 
we have developed “MeaslesTracker”, an interactive web 
application that enables users to analyze trends, apply 

dynamic filters, and generate visual representations of 
measles incidence. The application is accessible at  h t t p  s : 
/  / t i n  y u  r l .  c o m  / m e a  s l  e s - t r a c k e r - i t a.

To model the spread of measles, we considered differ-
ent types of random network networks: (i) Erdős-Rényi; 
(ii) Random Geometric Graph (RGG); and (iii) stochas-
tic block model (SBM). An Erdős-Rényi network is a type 
of random graph where each pair of nodes is connected 
with a fixed probability, resulting in a structure that fol-
lows a Poisson degree distribution. This model is widely 
used in social network analysis because it simulates the 
random formation of links between individuals, mirror-
ing real-world scenarios where connections are estab-
lished independently without any influence from existing 
relationships [25]. In contrast, the SBM organizes nodes 
into distinct communities or blocks and assigns different 
probabilities for forming edges based on whether nodes 
belong to the same group or different groups. This makes 
SBM particularly useful for modeling social networks 
that exhibit community structures, where individuals 
form tightly-knit groups with frequent internal connec-
tions, resembling cliques or social clusters [26, 27]. A 
RGG, on the other hand, is created by placing nodes in 
a continuous metric space, with connections established 
between nodes that fall within a specified distance from 
each other. This model captures the influence of spatial 
proximity, representing either physical closeness or social 
similarity, and is often used to model networks where 
geographic or social proximity impacts how communities 
form and interact [28].

For our simulations, we generated an initial network for 
each structure with 10,000 nodes. To ensure robustness, 
we maintained the same network structure throughout 
multiple simulations while varying only the number of 
vaccinated individuals. Additionally, to introduce vari-
ability in the connections without altering the overall 
topology, we shuffled the edges of the network for each 
iteration. We also calculated the eigenvalues of the adja-
cency matrices for each of these networks to further ana-
lyze the network dynamics. For the Erdős-Rényi network, 
we set the edge probability to p = 0.1, meaning each pair 
of nodes had a 10% chance of being connected, repre-
senting random connections between individuals with no 
predefined community structure [29]. For the SBM, we 
generated a network with 10,000 nodes distributed across 
three large communities of 5,000, 3,000, and 2,000 nodes, 
where intra-community connections were more frequent 
than inter-community ones. Lastly, for the RGG, we 
placed 10,000 nodes uniformly at random within a unit 
cube, connecting nodes if the distance between them 
was less than or equal to a specified radius. Each of these 
network structures allowed us to explore the impact of 
vaccination coverage under varying topological condi-
tions, providing insight into how different social network 

https://tinyurl.com/measles-data-ita
https://tinyurl.com/measles-tracker-ita
https://tinyurl.com/measles-tracker-ita
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models respond to interventions aimed at controlling 
disease spread.

Simulation framework implementation
In this work, we used a susceptible–infected–recovered/
removed–vaccinated (SIRV) model [30] to represent the 
spread of the disease. Each individual can be in a suscep-
tible (S), infectious (I), vaccinated (V), or recovered (R) 
state. Once a susceptible individual comes into contact 
with an infected one, it gains a probability of becoming 
infectious. Each person can infect a susceptible neigh-
bour and recover after a fixed or variable time span. Vac-
cinated people and recovered people do not play any 
further role in the simulation since they cannot change 
its state.

This model represent an extension of the classical Sus-
ceptible-Infectious-Recovered (SIR) model that accounts 
for vaccination of the susceptible population. It is based 
on the following system of differential equations: 

 
dS

dt
= −β(t)IS

N
− v(t)S, (1)

 
dI

dt
= β(t)IS

N
− γ(t)I, (2)

 
dR

dt
= γ(t)I, (3)

 
dV

dt
= v(t)S, (4)

where β, γ, v are the rates of infection, recovery, and vac-
cination, respectively. To simulate the spreading of the 
measles, we implemented this model by adapting the 
Python library provided by Menczner et al. [31]. We sim-
ulated each of the above-described networks, and then 
we measured averaged the results. At the beginning of 
the simulation, the large part of the population was in the 
S  state, and a small fraction was in the V  state, consider-
ing an increasing value of this fraction (0.05, 0.1, 0.2, 0.3). 
The initial fraction of infected nodes is always set to 0.01 
and nodes are randomly selected. Then, we set constant 

infection (β), recovery µ, and vaccination ϱ rates, consid-
ering different times. For each simulation step we rewired 
the contact graph to simulate the dynamic nature of con-
tacts. We also measured the epidemic rate to predict first 
and demonstrated through the simulation the impact of 
different vaccination strategies. Finally, we restarted the 
simulations and evaluated the spreading of the infection 
by measuring the number of infected individuals over 
time.

Results
Impact of fraction of vaccinated people on virus diffusion
In the first experiment, we used an Erdős-Rényi network 
model with 1000 nodes and an edge probability of 0.2 (p 
= 0.2). We gradually increased the proportion of vacci-
nated individuals at rates of 0.05, 0.1, 0.2, and 0.3, while 
keeping the infection and recovery rates constant across 
all simulations. At the start of each simulation, 0.01 of the 
nodes are randomly initialized as infected. As the num-
ber of people vaccinated increased, we observed a corre-
sponding increase in the diffusion coefficient, indicating 
that the network structure became more resistant to the 
outbreak. The increased vaccination rate significantly 
reduced the potential for widespread infections, demon-
strating greater resistance to disease spread. The results 
for the Erdős-Rényi model are reported in Table 1.

The second experiment utilized SBM with 10,000 
nodes distributed across three large communities. The 
SBM, a network model that generates graphs by parti-
tioning nodes into groups (or blocks) with different prob-
abilities of forming edges within or between groups, is 
particularly effective in simulating the community struc-
ture observed in real-world social networks. This realis-
tic nature of the SBM model, where individuals are more 
likely to create connections within their own community 
but maintain some links with other groups, instils con-
fidence in the validity of our research. By capturing this 

Table 1 Epidemic threshold values for varying fractions of 
vaccinated individuals. Increasing the fraction of vaccinated 
individuals raises the threshold, making it more difficult for 
an outbreak to occur. Data is based on a network with 10,000 
nodes following the Erdős-Rényi model having edge probability 
p = 0.1
Percentage 
of Vaccinated 
People

0.05 0.1 0.2 0.3 0.4

1
λmax

0.0008 0.0009 0.0011 0.0012 0.0016

Table 2 Epidemic threshold values for different fractions of 
vaccinated individuals. As the fraction of vaccinated individuals 
increases, the threshold rises, making outbreaks more difficult. 
Data is based on a network with 10,000 nodes following a SBM 
with three major communities of 5,000, 3,000, and 2,000 nodes.
Percentage 
of Vaccinated 
People

0.05 0.1 0.2 0.3 0.4

1
λmax

0.00025 0.00027 0.00032 0.00033 0.0004

Table 3 Epidemic threshold values for different fractions of 
vaccinated individuals. As vaccination coverage increases, the 
threshold rises, making outbreaks less likely. Data is based on a 
RGG with 10,000 nodes and a radius of 0.3.
Percentage of Vaccinated People 0.05 0.1 0.2 0.3 0.4

1
λmax

0.0052 0.052 0.07 0.1 0.52
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modular structure, the SBM allows us to study how dis-
ease spreads in more realistic, community-based settings.

In this setup, we varied the fraction of vaccinated indi-
viduals (0.05, 0.1, 0.2, 0.3, and 0.4) while keeping the 
infection and recovery rates constant. As the vaccination 
rate increased, the diffusion coefficient also rose, indicat-
ing that the SBM network, with its community structure, 
became progressively more resilient to the outbreak as 
indicated in Table 2.

In the third experiment, we employed a Geometric 
Random Graph (GRG) with 10,000 nodes, where each 
node is placed randomly in a geometric space, and edges 
are formed between nodes within a certain distance. This 
model captures spatial constraints often seen in real-
world networks, such as physical proximity influencing 
connections, and is particularly useful for simulating net-
works like wireless or social networks, where individuals 
connect based on location or range. We increased the 
fraction of vaccinated individuals with rates of 0.05, 0.1, 
0.2, 0.3, and 0.4 while maintaining constant infection and 
recovery rates. As the vaccination rate increased, the dif-
fusion coefficient also rose, showing that the network’s 
geometric structure became more resistant to disease 
spread as summarised in the Table 3.

Implementation of a vaccination campaign
In our second experiment, we examined how an outbreak 
behaved across three types of random graphs: Erdős-
Rényi, SBM, and RGG. The study compared the out-
break’s progression under two conditions: without any 

vaccination and with an increasing number of vaccinated 
individuals. The goal was to assess the impact of vaccina-
tion on the spread of the outbreak within each network 
structure.

For each graph model, we observed the outbreak’s 
spread when no vaccinations were administered, noting 
a rapid increase in infected individuals. As we gradu-
ally increased the number of vaccinated individuals, we 
tracked how the outbreak evolved, focusing on the num-
ber of susceptible individuals over time. The results con-
sistently demonstrated that increasing the number of 
vaccinated individuals slowed the outbreak. In all three 
graph models, the increase in vaccinated populations 
led to a noticeable reduction in the number of suscep-
tible individuals, preventing the outbreak from spread-
ing unchecked. This effect was observed in all scenarios 
regardless of the specific graph topology.

In the Erdős-Rényi graph, a random graph model where 
each edge exists with equal probability, the introduction 
of vaccinations rapidly curtailed the growth of the out-
break. Figure shows rapid and widespread infection, with 
the number of infected individuals rapidly increased and 
it also demonstrates how vaccination significantly slowed 
the outbreak’s progression, with a lower peak of infec-
tions and a larger proportion of the population remaining 
uninfected.

Similarly, vaccinations successfully prevented the 
outbreak from crossing community boundaries in the 
SBM, which divides the graph into distinct communi-
ties, as depicted in Fig. 2. The introduction of vaccinated 

Fig. 2 Comparison of Disease spread simulation in an unvaccinated population using a SBM network
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individuals caused the containment of outbreak within 
specific communities, with vaccinated individuals acting 
as barriers to inter-community spread.

In the RGG, as represented in Fig. 3, where nodes 
are placed in a geometric space, we found that vaccina-
tions created localized barriers to the outbreak, effec-
tively controlling its spread. The spatial nature of this 
model allowed us to visualize how vaccination strate-
gies can create ‘firebreaks’ in the population, limiting the 
geographic spread of the infection. This effect was par-
ticularly pronounced in densely populated areas, where 
vaccinated individuals disrupted potential pathways for 
the spread of the virus.

Across all three models, increasing the number of vac-
cinated people consistently reduced the infection rate and 
controlled the overall scale of the outbreak. This was evi-
denced by lower peaks in the infected population curves, 
slower rates of decline in the susceptible population, and 
final network states showing a higher proportion of unin-
fected individuals. The effectiveness of vaccination was 
particularly notable in the SBM and RGG models, where 
the community structure and spatial relationships ampli-
fied the protective effects of vaccination.

These results underscore the universal effectiveness of 
vaccination strategies across different network topolo-
gies, highlighting their crucial role in outbreak control 
regardless of the underlying social or spatial structure of 
the population.

Discussion
The simulation results demonstrate that vaccination 
plays a crucial role in controlling outbreaks, indepen-
dent of the underlying network structure or disease-spe-
cific characteristics. Although our contact-based model 
allowed us to explicitly account for how different network 
configurations (SBM, RGG, and Erdős-Rényi) influence 
disease spread, the consistent pattern in all simulations 
is the apparent reduction in outbreak potential as vacci-
nation coverage increases. This outcome emphasises the 
generalizability and robustness of vaccination as a critical 
public health tool.

In each of the three network configurations, we 
observed that an increase in vaccinated individuals led 
to a measurable improvement in network resilience, evi-
denced by a lower outbreak coefficient (the inverse of 
the largest eigenvalue of the adjacency matrix). Impor-
tantly, this reduction occurred consistently, regardless 
of the structural properties of the network. This suggests 
that vaccination efficacy is not dependent on the pre-
cise details of how individuals are connected but instead 
serves as a universal mechanism for mitigating disease 
spread.

In networks characterized by community structure, 
where connections within tightly-knit groups are more 
frequent, vaccination effectively disrupts spread path-
ways. Even in such highly clustered configurations, as 
modeled by the stochastic block approach, the presence 
of vaccinated individuals prevents outbreaks from tak-
ing hold within or between communities. Similarly, in 

Fig. 3 Comparison of Disease spread simulation in an unvaccinated population using a Geometric Random Graph network
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networks organized by spatial proximity, such as RGGs, 
vaccination weakens the likelihood of local clusters 
forming outbreaks. Despite the spatial organization, the 
introduction of vaccinated individuals leads to substan-
tial reductions in both outbreak size and probability, 
showing that physical proximity does not diminish the 
effectiveness of immunization. Even in more random, 
unstructured networks, where individuals have an equal 
probability of connecting to any other individual, as in the 
Erdős-Rényi model, vaccination still significantly reduces 
the outbreak potential. This highlights that immunization 
disrupts the potential for widespread spread, regardless 
of the randomness or lack of structure in the connec-
tions. This consistency across different types of networks 
underscores a crucial point: while the specific structure 
of a population’s contacts can influence the dynamics of 
disease spread, vaccination remains a potent interven-
tion tool in any configuration. The universal applicability 
of vaccination as a strategy, transcending the nuances of 
network topology, reaffirms its effectiveness in diverse 
scenarios and serves as a reassuring message for public 
health strategies.

Another key observation from these simulations is that 
the effectiveness of vaccination in controlling outbreaks 
is not inherently tied to the particular disease being mod-
elled. The model measured outbreak control in terms of 
network dynamics (through the largest eigenvalue of the 
adjacency matrix), which provides a generalised frame-
work for understanding disease spread. By removing 
susceptible nodes from the network through vaccina-
tion, we are fundamentally altering the capacity of the 
network to sustain an outbreak, regardless of the specific 
spread dynamics of the disease. This observation implies 
that vaccination can be effective across a wide range of 
diseases, even those with varying spread parameters. 
Whether a disease is highly infectious or less sections are 
irrelevant of reducing the number of susceptible individ-
uals consistently limits the potential for sustained spread. 
The mathematical structure of the outbreak coefficient 
evidences this fact, as it reflects the connectivity and 
susceptibility within the population rather than disease-
specific features.

The importance of these results cannot be overstated. 
Vaccination remains one of the most effective interven-
tions in public health, and our findings support the idea 
that its benefits extend across a variety of contact net-
works and diseases. Whether populations are structured 
in tightly knit communities, spread across spatially con-
strained regions, or randomly connected, vaccination 
serves as a universal defence against the spread of infec-
tious diseases. This has far-reaching implications for pub-
lic health policy, especially in situations where the exact 
nature of a disease’s spread dynamics or the population’s 
contact structure may not be fully known. For example, 

in the early stages of novel outbreaks (like the COVID-
19 pandemic), where both the disease’s characteristics 
and population contact networks were not immediately 
understood, vaccination campaigns proved essential 
in reducing spread, supporting the claim that vaccina-
tion is broadly effective irrespective of such unknowns. 
Moreover, in real-world scenarios, the structure of social 
interactions is often dynamic and not easily captured by 
a single static network model. Vaccination proved ben-
eficial across a spectrum of network structures in our 
simulations, further underscoring its importance in real 
populations where connections are often a mixture of 
random, community-based, and spatially constrained 
interactions.

The universality of vaccination as an outbreak control 
measure, independent of network topology or disease 
characteristics, suggests that broad-based vaccination 
strategies should be prioritised in pandemic prepared-
ness and routine immunisation campaigns. This is par-
ticularly critical in scenarios where specific interventions, 
such as contact tracing or social distancing, may be chal-
lenging to implement effectively or may be subject to 
delays. Furthermore, our findings emphasise the need for 
robust vaccination coverage despite emerging diseases 
with unknown epidemiological properties. The simula-
tions suggest that vaccination campaigns do not need to 
be finely tuned to the particular network structure or dis-
ease dynamics to be effective–underscoring the impor-
tance of widespread vaccination as a first-line defence in 
public health responses.

Limitations
While network models and compartmental frameworks 
offer valuable insights for analyzing the impact of vacci-
nation strategies on the spread of infectious diseases, it’s 
crucial to acknowledge that the simplifications inherent 
in these models may limit their practicality and precision 
in real-world settings [32–34]. It’s important to recog-
nize that reducing complex human interactions to fixed 
or dynamically modeled networks doesn’t fully encapsu-
late the subtleties and variations of actual human behav-
ior, which significantly influence disease spread [35]. For 
instance, the assumption that contacts among individu-
als remain constant over time overly simplifies the fluid 
nature of human interactions, as individuals often change 
their contact patterns. Therefore, introducing dynamic 
network models that account for these changes is crucial. 
Moreover, to accurately gauge the effectiveness of vac-
cination campaigns, network models must also consider 
variations in susceptibility and infectiousness among 
individuals. From a data-centric perspective, the data 
used to construct these networks may not accurately 
reflect the broader population due to limitations in data 
collection and inherent biases in observing population 
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dynamics. Furthermore, the definition of a “contact” 
in these models needs to adequately consider the dura-
tion and proximity of interaction necessary for spread, 
which can vary widely among different diseases and even 
among strains of the same disease. This observation leads 
to the argument that models should be disease-specific 
rather than aiming for a one-size-fits-all approach. The 
potential to harness artificial intelligence in computa-
tional modeling for creating innovative systems that 
integrate deep learning, computational statistics, and 
data science is gaining traction [34]. Firstly, employing 
AI could enhance data collection processes by facilitat-
ing the capture of data while minimizing noise impact. 
Secondly, deep learning techniques could accelerate the 
simulation and prediction phases, offering faster insights 
into potential outbreak scenarios and the effectiveness of 
intervention strategies.

Conclusion
This study emphasized the critical role that vaccination 
plays in controlling the spread of infectious diseases with 
application to morbillivirus. Through computational 
simulations across different network configurations the 
results consistently showed that higher vaccination cov-
erage significantly reduces disease spread. This was evi-
dent in all network structures, regardless of their specific 
properties. The robustness of vaccination as a tool for 
outbreak control highlights its universal applicability in 
diverse epidemiological and social contexts, making it an 
indispensable strategy in public health efforts to prevent 
widespread disease spread.
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