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Abstract: The rapid emergence of infectious disease outbreaks has underscored the urgent
need for effective communication tools to manage public health crises. Artificial Intelligence
(AI)-based chatbots have become increasingly important in these situations, serving as
critical resources to provide immediate and reliable information. This review examines
the role of AI-based chatbots in public health emergencies, particularly during infectious
disease outbreaks. By providing real-time responses to public inquiries, these chatbots
help disseminate accurate information, correct misinformation, and reduce public anxiety.
Furthermore, AI chatbots play a vital role in supporting healthcare systems by triaging
inquiries, offering guidance on symptoms and preventive measures, and directing users to
appropriate health services. This not only enhances public access to critical information
but also helps alleviate the workload of healthcare professionals, allowing them to focus
on more complex tasks. However, the implementation of AI-based chatbots is not without
challenges. Issues such as the accuracy of information, user trust, and ethical considerations
regarding data privacy are critical factors that need to be addressed to optimize their
effectiveness. Additionally, the adaptability of these chatbots to rapidly evolving health
scenarios is essential for their sustained relevance. Despite these challenges, the potential
of AI-driven chatbots to transform public health communication during emergencies
is significant. This review highlights the importance of continuous development and
the integration of AI chatbots into public health strategies to enhance preparedness and
response efforts during infectious disease outbreaks. Their role in providing accessible,
accurate, and timely information makes them indispensable tools in modern public health
emergency management.

Keywords: artificial intelligence; disease surveillance; ChatGPT; misinformation; COVID-19;
health communication; machine learning; statistical analysis; natural language processing
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1. Introduction
The world is witnessing an increasing frequency of infectious disease outbreaks, such

as the COVID-19, Ebola, and mpox pandemics, which exposed significant gaps in public
health communication and crisis management [1]. In these scenarios, the dissemination
of timely and accurate information is critical to control the spread of disease and manage
public anxiety. Digital health solutions [2] have emerged as essential tools to address these
challenges, offering scalable, immediate, and reliable communication solutions because,
during these health emergencies, traditional communication channels are often saturated.
In this context, artificial intelligence (AI)-based chatbots have emerged as powerful tools
to address the growing need for immediate and reliable responses during public health
crises. These AI-driven systems, capable of engaging in human-like conversations, offer
a scalable solution to handle increased public inquiries and provide crucial information
around the clock [3]. Despite their potential, the adoption of AI chatbots in public health
remains an ongoing challenge. Initially, the technology faced considerable resistance due to
concerns about the accuracy of the information provided, ethical implications, and the risk
of misuse. Early research highlighted AI’s limitations in comprehending complex human
emotions and the dangers of misinformation, which could heighten public anxiety during
health crises [4]. For example, Gao et al. [5] found that public trust in AI systems was
initially low, driven by fears of biased or inaccurate responses. However, as the technology
has advanced, so has its perceived utility. Innovations in natural language processing
(NLP) and machine learning (ML) have greatly enhanced chatbots’ ability to generate
accurate, contextually relevant responses [6]. Moreover, the COVID-19 pandemic acted as
a turning point, accelerating the widespread adoption of AI chatbots as healthcare systems
worldwide struggled to cope with the overwhelming demand for reliable information and
support [7]. The shift from skepticism to optimism can be attributed to several factors. First,
the demonstrated ability of chatbots to handle large volumes of inquiries in real-time has
alleviated some of the initial concerns about their reliability [8]. Second, the integration of
AI chatbots into existing healthcare systems has shown tangible benefits, such as reducing
the workload on healthcare professionals and improving patient outcomes through timely
information dissemination [9]. Finally, the development of more sophisticated models,
such as GPT-4, has enhanced the ability of chatbots to understand and respond to complex
queries, further building trust among users [10].

The potential of AI chatbots in public health emergencies is manifold. First, they
serve as frontline communicators, offering real-time answers to citizens’ questions about
symptoms, preventive measures, and local health guidelines [11]. This immediate access to
information helps to alleviate public anxiety and promote adherence to health protocols,
which is critical to curbing the spread of infectious diseases [12]. In addition, by providing
accurate and consistent information, AI chatbots play a key role in countering the spread
of misinformation, which has been identified as a significant challenge during health
crises [13]. Beyond their role in public communication, AI chatbots also offer substantial
support to healthcare systems. By sorting requests and providing initial guidance, these
systems can help reduce the burden on healthcare providers, allowing them to focus on
more complex cases and critical patient care [7]. This is especially valuable during the
peak of epidemics, when healthcare resources are often limited. In addition, chatbots
can help with data collection and analysis, providing health authorities with valuable
information about public concerns and epidemic progression [8]. The implementation
of artificial intelligence chatbots in healthcare emergencies, however, is not without its
challenges. Ensuring the accuracy and reliability of the information provided by these
systems is critical, as misinformation can have serious consequences in healthcare [9]. There
are also privacy and data security concerns, particularly when dealing with sensitive health
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information [14]. In addition, the issue of public trust in AI systems remains a significant
factor that can affect their effectiveness [5]. Despite these challenges, the potential benefits
of AI chatbots in health emergency management are considerable. Their ability to provide
immediate, scalable, and personalized responses makes them valuable tools in modern
crisis communication strategies. As AI technology continues to advance, these systems are
becoming more sophisticated, able to understand context, adapt to new information, and
even detect emotional states to provide more empathetic responses [15].

In recent years, it has become clear that artificial intelligence chatbots are not just
technological innovations, but essential tools in the fight against public health threats,
bridging the gap between authorities and the public and ensuring that vital information
reaches those who need it most, when they need it most. The ongoing development and
integration of artificial intelligence chatbots into the public health infrastructure is a critical
area of research and implementation. This review aims to explore the current state of the
use of AI chatbots in public health emergencies, their benefits, challenges, and potential
future developments, providing insights into how these technologies can be optimized to
improve public health response efforts. By harnessing the power of AI in public health
communication, we can potentially create more resilient and responsive health systems
that can meet the complex demands of future public health emergencies.

In this paper, we systematically explore the role of artificial intelligence-based chatbots
in public health emergencies, with a focus on infectious disease outbreaks. After a review
of the psychological relevance of chatbots in health communication, we analyze their
historical development, from early experiments such as ELIZA and PARRY to current
advancements with generative artificial intelligence models (Section 2). Next, we examine
the specific applications of these tools in genetics and genomics (Section 3), as well as their
use for the dynamic management of healthcare spaces during epidemics (Section 4). The
paper continues with an analysis of the potential of chatbots as statistical consultants in
epidemiology (Section 5) and their reliability in clinical decision support (Section 6). Finally,
we address the main challenges and limitations related to their use (Section 7), concluding
with a discussion of future prospects and research needs to further improve the integration
of these tools into public health strategies (Section 8).

2. Chatbots and Their Psychological Relevance for Public
Health Communication

Chatbots have a long history within the domains of artificial intelligence and psychol-
ogy, as summarized in Table 1. This section reviews historical (ELIZA, PARRY) and more
recent (GPTs) contributions to the field. Focus is given to highlighting the psychological
implications of chatbots for public health communication, in view of foundational and
more recent scientific literature.

Table 1. A brief outline of the conversational systems tested in psychological fields and relevant for
public health communication.

Aspect Key Points

Historical Chatbots - ELIZA (1960s): Mimicked a psychotherapist;
demonstrated the “ELIZA effect” (users ascribed
human qualities).

- PARRY (1970s): Simulated paranoid schizophrenia;
showcased personification of complex human traits.
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Table 1. Cont.

Aspect Key Points

Psychological Relevance - Theory of Mind: Users project mental states onto
chatbots, enabling trust and engagement.

- Trust: Critical for effective public health
communication and behavior change.

- Personification: Human-like traits (empathy,
understanding) enhance user engagement and retention.

Modern Chatbots (GPTs) - Advancements: GPTs enable human-like text
generation and context understanding.

- Applications: Used in disease surveillance, health
education, and behavior change.

- Challenges: Inherit human biases and exhibit
non-human biases (e.g., hallucinations, overconfidence).

Future Directions - Address biases (human and non-human) in
chatbot responses.

- Foster interdisciplinary collaboration (psychology,
computer science, public health) to optimize chatbot
use in public health.

2.1. The ELIZA Effect and Its Implications in Public Health Communication

ELIZA was a protoypical chatbot developed in the 1960s by Joseph Weizenbaum [16].
ELIZA mimicked a psychotherapist, engaging users in text-based conversations based
on if–else statements and simple pattern matching [16]. Despite its simplicity, ELIZA
demonstrated that machines could interact with humans while providing simple recom-
mendations or elements of psychotherapeutic knowledge adapting to human requests [17].
In the psychological literature, it is known that the patient–psychoterapist dialogue is
founded not only on knowledge but also on trust, engagement, care and empathy, which
all promote a soothing environment [18]. Weizenbaum observed an “ELIZA effect”: Even
when individuals were aware that ELIZA was a computer program, they still treated it as
if it had genuine human qualities like intentions or emotions [16]. This phenomenon is
linked with the theory of mind in developmental psychology [17,19]. A theory of mind is
the cognitive ability to understand that others have thoughts, feelings, and perspectives,
potentially different from one’s own. This ability typically develops in early childhood
and is fundamental to human social interactions, enabling empathy, communication, and
prediction of others’ behavior [19]. Despite knowing ELIZA’s mechanistic nature, users pro-
jected mental states onto the machine, assuming that ELIZA could understand and respond
to their emotional cues. This projection, a manifestation of the ELIZA effect, illustrates that
the theory of mind can extend to chatbots: Humans talking to even simple chatbots have
the tendency to ascribe mental states to the latter and make sense of their behavior.

The ELIZA effect and its theory-of-mind component have deep repercussions for
public health communication. These psychological phenomena show that humans can
engage psychologically with chatbots, ultimately building trustful rapports with them. In
public health, trust is a critical emotion that underlies effective communication and the
success of health interventions [20,21]. Public health communication can be considered as
a service where users are gaining health knowledge from one or several sources. Extensive
psychological research [22] has shown that trust in service relationships can rise from
affective phenomena (trusting a person perceived as friendly) or cognitive phenomena
(trusting someone after a logical reasoning). Furthermore, several scientific studies have
emphasized the importance of building trust between public health communicators and
the public to ensure the effective dissemination of health information, e.g., open data [23],
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and the adoption of recommended health behaviors, e.g., face masking [21]. The studies by
Kasperson and colleagues [24] highlight the concept of the social amplification of risk: the
public’s perception of risk is significantly influenced by the trust they have in the source
of information. When public health communicators are perceived as trustworthy, their
messages are more likely to be accepted and acted upon by the public [24]. Trustworthiness,
or its lack, can either amplify or attenuate the public’s response to health risks, hampering
engagement with safety health measures during a pandemic [25]. Hall and colleagues [26]
emphasized that, beyond public health communication, higher trust was also found to
be associated with higher satisfaction, better adherence to medical advice, and improved
health outcomes. These elements underline how chatbots can be attributed trust by humans
and could thus play a relevant role for building trustful, and hence more successful,
communication campaigns about public health.

2.2. PARRY, Personification in Chatbots and Its Relevance in Public Health

PARRY [27] is a key example of personification in chatbots, i.e., the ability for chatbots
to tune their responses according to a given set of human traits [18]. Developed in the 1970s,
PARRY was designed to simulate a person with paranoid schizophrenia [27]. PARRY’s
ability to generate responses that closely mirrored some symptoms of paranoia, like sus-
piciousness or delusional thinking, demonstrated that a computer could be programmed
to replicate some complex human thought patterns and thus impersonate some human
traits in conversation. These achievements were obtained through significant advancement
in NLP, at the time, incorporating decision-making models and weighted responses that
simulated paranoid reasoning [27]. The dialogues produced by PARRY were convincing
enough to induce even trained psychiatrists into believing that PARRY’s quips came from
human patients [28]. PARRY remains a historical example of how even simple chatbots can
portray personifications of complex human features.

In public health communication, personification is crucial for chatbots’ engagement
and retention. Firstly, personification can make chatbots appear more relatable and ap-
proachable, fostering user engagement. According to Bickmore and Picard [29], users
are more likely to engage in sustained interactions with chatbots perceived as having
human-like characteristics, such as empathy and understanding. In public health contexts,
where conveying information and promoting behavior change are key goals [23], increased
engagement can enhance the effectiveness of health communication. For instance, a chatbot
designed to encourage vaccination might be more persuasive if users feel it genuinely
understands and cares about their concerns [30]. Secondly, chatbots with personified
features may help improve user retention by making interactions more enjoyable and
memorable. Studies suggest that when chatbots exhibit human-like behaviors, such as
humor or even personalized conversations, users are more likely to return for subsequent
interactions [31]. This is especially relevant in public health, where ongoing engagement
can be critical for chronic disease management, health education, and behavior modifica-
tion [20,30]. Personification in chatbots could be managed at the level of textual responses
but also through other components, like avatars or animations. Importantly, the latter may
also influence user engagement. For instance, Ciechanowski and colleagues [32] showed
that simpler textual chatbots, without complex animations or avatars, induced in users
less negative affect and less intense psychophysiological reactions than simpler, text-only,
chatbots. These findings indicate that not only text but also additional visual elements
might influence user engagement with public health chatbots.
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2.3. From Early Chatbots to Generative Pre-Trained Transformers

After ALICE (Artificial Linguistic Internet Computer Entity) [33], the real breakthrough
for chatbots began with the advent of generative pre-trained transformers (GPTs) in the mid-
2010s [6]. GPTs enabled chatbots to generate more human-like text and understand context
with greater accuracy. ELMo (Embedding from Language Model), BERT (Bidirectional
Encoder Representations from Transformers) and the more recent Large Language Models
(LLMs), like GPT-4, all represent advanced architectures of artificial neural networks,
trained on vast amounts of human texts and able to produce human-like responses [34]. In
public health, modern chatbots are now being deployed to assist in disease surveillance,
health education, and behavior change interventions [35], as discussed in the remainder of
this review.

From a psychological perspective, LLM-based chatbots can be powerful for public
health communication since they (i) are capable of personification [18], like PERRY, foster-
ing engagement; (ii) can be subject to the ELIZA effect [35], fostering trust; and (iii) can
display basic elements of a theory of mind [36]. However, LLMs are also complex systems,
trained via reinforcement learning to closely reproduce human data [35]. Consequently,
LLM-based chatbots also end up inheriting human biases [37]. In cognitive psychology,
biases are deformations from common ways of combining intuitive and logical reasoning
when processing knowledge [18]. Biases can be considered cognitive shortcuts reducing the
effort required for processing information. For instance, confirmation bias makes it easier to
accommodate novel knowledge if it confirms one’s own pre-existing information. In public
health communication, LLMs displaying biases similar to human communicators’ might
be considered neutral addition to the system. However, LLMs also possess non-human
biases, due to their artificial nature [37]: (i) myopic overconfidence, e.g., pushing through
inaccurate reasoning while appearing overly self-confident, and (ii) hallucinations, i.e.,
attempting to satisfy users’ requests while interpolating over missing data from training
knowledge. In public health contexts, hallucinations represents a deeply concerning phe-
nomenon. Hallucinations might range from subtle—like fake but vaguely familiar scientific
papers mentioned as sources backing up health facts [38]—to outright disastrous—like
recommending toxic levels of herbal remedies for clinical pathologies [39]. Hallucinations,
like myopic overconfidence, stem from two key factors. On the one hand, the reinforcement
learning used to train GPTs pushes LLMs to always provide an answer, even in the pres-
ence of faulty, missing, or inaccurate data [37]. On the other hand, LLMs and the chatbots
based on them do not possess metacognitive skills for filtering out less reliable information.
This is different from what humans can do, e.g., filtering out dubious info about vaccines
coming from extremely unreliable sources [40]. This lack of metacognitive skills makes
LLMs poor fact searchers and providers. Because of myopic overconfidence, LLM-based
chatbots can produce recommendations sounding fair but ultimately completely false. For
instance, Metze and colleagues [38] found that, while producing 50 small literature reviews
on Chagas’ disease, GPT 3.5 produced references with major hallucinations in 86.7% of
the cases. Always when investigating GPT 3.5, recent studies [39,41] found that the LLM
recommended to patients with the metabolic dysfunction-associated steatotic liver disease
using herbal remedies that are considered by experts as harmful. These concrete examples
underline the grave consequences that hallucinations can have over LLMs’ performance as
public health chatbots. The future developments of LLM-based chatbots for public health
should keep capitalizing on the enormous potential for personification, trust-creation and
cognitive reasoning that LLMs provide, while addressing key issues originating from hu-
man and non-human LLMs’ biases. A synergy between psychology, computer science and
public health communication would greatly push the scientific community towards such a
promising future direction.
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3. Artificial Intelligence in Genetics and Genomics
3.1. AI in Genetics and Computational Genomics

The convergence of artificial intelligence (AI) with genetic sciences has ushered in
a new era of innovation in genomics, driven by the need to analyze vast quantities of
biological data [42]. AI algorithms, especially those in the realms of ML and deep learn-
ing (DL), are pivotal in addressing the complex and multifaceted challenges posed by
modern genomics [43]. With the advancement of high-throughput sequencing technolo-
gies, such as next-generation sequencing (NGS) and single-cell sequencing, the quan-
tity of genomic data generated has exponentially increased. Interpreting this massive
volume of data necessitates sophisticated computational tools that are capable of han-
dling both the scale and complexity of the human genome, which is where AI systems
have demonstrated transformative potential. A key application of AI in genomics is in
variant calling. Genomic variation, such as single nucleotide polymorphisms (SNPs),
insertions, deletions, and structural variants, are critical to understanding human dis-
ease, evolution, and genetic diversity [44]. Traditional approaches to variant calling,
which heavily rely on statistical models, often struggle with distinguishing true variants
from sequencing errors, particularly in the repetitive or poorly characterized regions of
the genome [45]. AI, and more specifically deep learning models such as convolutional
neural networks (CNNs), have been successfully employed to overcome these limita-
tions by learning complex patterns directly from raw sequencing data [46]. For example,
Google DeepVariant (available at https://github.com/google/deepvariant, accessed on
5 February 2025) is an AI-powered tool that uses deep learning techniques to improve
the accuracy of variant calling, significantly reducing error rates compared to traditional
bioinformatics pipelines. DeepVariant was trained on a diverse set of genomic data to
predict genetic variants directly from sequencer reads, demonstrating how AI can sur-
pass rule-based methods and enhance the fidelity of genomic data interpretation. Beyond
variant calling, AI plays a crucial role in functional genomics, particularly in predicting
the functional impact of genetic variants. Not all genetic variants are functionally signif-
icant; some may be benign, while others can have profound effects on gene regulation,
protein structure, or cellular pathways [47]. AI models, such as those based on recur-
rent neural networks (RNNs) and attention mechanisms, have been used to predict the
pathogenicity of variants [48]. These models are trained on annotated databases, like
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/, accessed on 5 February 2025) and the
Genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute.org, accessed
on 5 February 2025), which contain information on the clinical significance of known
variants. By leveraging AI, it is possible to prioritize variants of unknown significance
(VUSs) for further study, thus accelerating the identification of potential disease-causing
mutations [42]. Additionally, AI-driven approaches like AlphaFold, developed by Deep-
Mind, have revolutionized protein structure prediction, which is inherently linked to
genomics [49]. AlphaFold’s ability to accurately predict 3D protein structures from amino
acid sequences has opened new avenues in understanding how genetic variants affect
protein folding and function, which is crucial for identifying novel drug targets and un-
derstanding the molecular basis of diseases. In the context of genome-wide association
studies (GWAS), which aim to identify associations between genetic variants and traits or
diseases, AI techniques have been invaluable in managing the immense computational
burden associated with these studies. GWAS typically involve scanning millions of genetic
variants across large populations to identify those associated with specific phenotypes.
Traditional GWAS methods rely on linear models and statistical thresholds to detect signifi-
cant associations, but these approaches may fail to capture complex interactions between
genetic variants (epistasis) or between genes and environmental factors. AI, particularly

https://github.com/google/deepvariant
https://www.ncbi.nlm.nih.gov/clinvar/
https://gnomad.broadinstitute.org
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in the form of deep learning and neural networks, can model these nonlinear interactions
and capture subtle genetic effects that might be missed by conventional methods [50].
For instance, AI algorithms can integrate genomic data with other layers of biological
data, such as transcriptomics, epigenomics, and proteomics, to provide a more holistic
view of the genetic architecture underlying complex diseases like cancer, diabetes, and
neurodegenerative disorders [42,51]. One of the most promising areas of AI application
in genomics is drug discovery and development [52]. Genomic data play a critical role
in identifying drug targets and understanding the genetic basis of diseases, and AI can
accelerate this process by analyzing large-scale genomic datasets to identify patterns that
human researchers might miss [42]. For example, AI models can be trained on genomic
data from patients with a particular disease to identify common genetic variants or gene
expression profiles that could be targeted by new drugs, or can be utilized to predict the
pathogenicity of variants, map an individual’s sequence to genome references, and identify
any clinically significant mutations (Figure 1). In addition to target identification, AI can
also be used to predict how patients with different genetic backgrounds might respond
to certain drugs, thus paving the way for more personalized treatments. This approach,
often referred to as pharmacogenomics, is particularly important for diseases like cancer,
where genetic mutations can influence drug efficacy and resistance. AI-driven insights
from genomic data can help researchers develop targeted therapies that are more likely to
be effective for specific patient populations, thereby reducing the time and cost associated
with traditional drug discovery processes [51]. In addition to these specific applications, AI
has become an integral part of data integration and interpretation in genomics. The wealth
of genomic data generated by sequencing technologies is often accompanied by other
types of omics data, such as transcriptomics (gene expression), proteomics (protein levels),
and epigenomics (DNA methylation patterns) [53]. Integrating these diverse datasets is
essential for gaining a comprehensive understanding of biological processes, but it is also
extremely challenging due to the sheer volume and heterogeneity of the data. AI models,
particularly those using unsupervised learning techniques, can help by identifying hidden
patterns and relationships within the data that might not be apparent through traditional
analytical methods. For example, AI-driven approaches can cluster similar samples based
on multi-omic data, revealing subtypes of diseases that were previously unrecognized.
This capability is especially valuable in cancer research, where tumors are often genetically
heterogeneous, and identifying subtypes can lead to more effective, personalized treatment
strategies [54].

Figure 1. Example of the use of artificial intelligence to predict the pathogenicity of variants [55].
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3.2. AI-Based Chatbots in Genomics

AI-based chatbots are emerging as valuable tools in genomics, offering new ways
to provide instant access to complex genomic information for both professionals and the
general public. In the genomic context, these chatbots have significant potential in stream-
lining data interpretation, facilitating patient engagement, and supporting personalized
medicine [56]. One of the primary applications of chatbots in genomics is to assist re-
searchers and clinicians in interpreting genetic data. Given the complexity and volume
of data generated by genome sequencing technologies, AI-powered chatbots can serve
as intermediaries, enabling users to query genomic databases, receive summaries of vari-
ant pathogenicity, or retrieve information on gene–disease associations in real time [48].
By integrating with genomic databases such as ClinVar, gnomAD, and Ensembl, these
chatbots can provide quick, reliable responses to questions about specific genetic variants,
their clinical relevance, or population frequency. Such tools can be especially useful in
clinical settings, where genetic counselors or healthcare providers may need to rapidly
access information to make informed decisions about patient care [57]. In addition to
aiding professionals, AI chatbots can play a transformative role in genetic counseling by
interacting directly with patients. The increasing availability of direct-to-consumer ge-
netic testing services, such as 23andMe (https://www.23andme.com/en-int/, accessed on
5 February 2025) and AncestryDNA (https://www.ancestry.com, accessed on
5 February 2025), has led to a surge in individuals seeking to understand their genetic
information. AI-driven chatbots can act as digital genetic counselors, answering common
questions about genetic reports, explaining the implications of certain genetic variants, and
even guiding users through the steps they should take after receiving potentially concern-
ing results [58]. For example, a chatbot could explain whether a particular genetic variant
is linked to an increased risk of cancer or other inherited conditions and advise the user
on follow-up actions, such as consulting with a genetic counselor or undergoing further
testing. This democratizes access to genetic insights, particularly for individuals who
may not have easy access to professional genetic counseling services. By making genomic
information more accessible and understandable, chatbots can help reduce the anxiety and
confusion that often accompany the interpretation of personal genetic data. Another area
where AI-based chatbots are gaining traction is in supporting personalized medicine by
helping patients and healthcare providers interpret genomic data in the context of treat-
ment options. Pharmacogenomics, the study of how genes affect an individual’s response
to drugs [59], is a key aspect of personalized medicine [60], and AI chatbots can play a
crucial role in this field [61]. For example, a chatbot integrated with pharmacogenomic
databases could help a physician determine whether a patient’s genetic profile suggests a
potential adverse reaction to a specific medication or whether they might benefit from a
particular drug therapy based on their genetic makeup. This capability could significantly
enhance the decision-making process in real-time, providing immediate, personalized
recommendations for medication regimens that are tailored to an individual’s genetic
background. Furthermore, such chatbots could be designed to continually update and
refine their knowledge base as new research and clinical trials provide more data, ensuring
that patients and healthcare providers are working with the most current information
available. Finally, AI-based chatbots also have the potential to address ethical concerns
in genomics by promoting informed decision making and consent [62]. As genomic data
become increasingly integrated into healthcare and research, ensuring that individuals
understand the implications of sharing their genetic information is crucial. Chatbots can be
programmed to explain the privacy risks, data-sharing policies, and potential consequences
of genomic testing in simple, comprehensible language [63]. This empowers individuals
to make informed choices about whether to participate in genomic studies or share their

https://www.23andme.com/en-int/
https://www.ancestry.com
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genetic data with healthcare providers. In research settings, chatbots could be used to
facilitate the informed consent process, answering participant questions about genomic
research protocols, data usage, and long-term storage, which can improve transparency
and trust between researchers and participants. While the role of AI-driven chatbots in
ensuring that patients understand the ethical and legal aspects of genomic data sharing is
promising, particularly in the context of insurance and employment discrimination based
on genetic information, further research is needed to explore the practical implementation
of such functions. As the field of genomics evolves, chatbots may play a supportive role in
helping individuals navigate the complex ethical landscape, but it remains to be seen how
effectively they can address these concerns in real-world applications.

4. Leveraging AI-Driven Chatbots for Dynamically Adaptable
Healthcare Spaces During Outbreaks
4.1. A Pragmatic Architectural Approach to the COVID-19 Response: The Lessons of the Pandemic

Early in the 2020 COVID-19 pandemic, the rapid construction of modular hospitals in
Wuhan, China, using prefabricated components and negative-pressure ventilation, demon-
strated the critical role of rapidly deployable quarantine facilities [64]. As the pandemic
reached the United States, the American Institute of Architects (AIA) convened a task force
to develop guidelines for converting existing structures into COVID-19 hospitals [65]. This
effort resulted in a checklist, integrating expertise from diverse fields, to facilitate the rapid
adaptation of buildings, prioritizing functionality over esthetics [66]. The initial phase of
the pandemic response highlighted the challenge of determining optimal building typolo-
gies for quarantine hospitals. Open-plan structures (e.g., arenas) and closed-plan structures
(e.g., hotels) each presented distinct advantages and disadvantages regarding patient iso-
lation and infection control. By late spring 2020, following the first wave, it became clear
that an ad hoc approach to such large-scale epidemiological and public health events was
insufficient. Future pandemic preparedness necessitates a shift towards formalized pop-up
testing infrastructure, prefabricated hospitals, and the integration of pandemic-resilient
features into residential design, such as decontamination zones [67]. A growing consen-
sus emerged that architects must address the challenge of designing built environments
capable of maintaining essential societal functions, including work and education, during
future pandemics, thereby mitigating the need for widespread societal shutdowns [67].
Shaping the future of architectural design to accommodate the possibility of recurring
pandemic events requires a structured, predictive approach, integrating microbiological
and epidemiological variables into the design process [66].

4.2. Post-Pandemic Architecture: Utilizing Digital Tools to Mitigate Airborne Transmission Risk

The COVID-19 pandemic has underscored the crucial role of architectural design
in mitigating the spread of airborne infections. Digital simulation techniques, including
CAD, CFD, and BIM, are increasingly employed to analyze the dynamics of viral particles
within built environments [68,69]. These tools enable architects and engineers to model
airflow patterns and assess the effectiveness of ventilation systems in reducing transmission
risks. This interdisciplinary collaboration facilitates the development of predictive models
that inform the design of more resilient architecture, addressing critical knowledge gaps
regarding airborne viral transmission and ventilation efficacy.

4.3. Building the Future of Outbreak Response: AI Chatbots and Adaptive Hospital Design

The rapid emergence and spread of infectious diseases necessitate agile and adapt-
able healthcare infrastructure capable of responding effectively to diverse pathogens and
evolving outbreak dynamics. Traditional healthcare facility design often proves inflexible
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and slow to adapt, hindering the effective management of rapidly unfolding public health
crises [70]. This underscores the need for innovative approaches that leverage technology
to create dynamically adaptable spaces capable of meeting the unique challenges posed
by different outbreaks [71]. AI-driven chatbots, with their ability to process vast amounts
of data and generate real-time insights, offer a promising avenue for achieving this goal
(Table 2) [72,73].

Table 2. AI-driven chatbots for the rapid design of outbreak-specific context.

Strategy Chatbots Role Chatbots Functions

Data-Driven
Design Parameters

Chatbots can be integrated with
databases containing information
on various pathogens, including
their modes of transmission,
incubation periods, and virulence.
This data can inform the design
parameters for
outbreak-specific spaces.

• Transmission mode: The chatbot can determine
the primary mode of transmission (airborne,
droplet, contact) and recommend appropriate
infection control measures, such as ventilation
requirements, isolation protocols, and personal
protective equipment guidelines [74].

• Incubation period: Knowing the incubation period
helps determine the necessary duration of
quarantine or isolation and informs the design of
waiting areas and monitoring spaces [75].

• Virulence and severity: The severity of the disease
influences the level of care required and the design
of treatment areas, including the need for
intensive care unit capabilities [76].

Rapid prototyping and
space planning

Chatbots can assist with rapid
prototyping and space planning
by generating layout options
based on the specific needs of
the outbreak.

• Modular design: The chatbot can recommend
modular designs that can be quickly assembled
and reconfigured, allowing for flexibility and
adaptability [77].

• Space allocation: Based on projected patient
volumes and the required level of care, the chatbot
can optimize space allocation for different
functions, such as triage, testing, isolation, and
treatment [78].

• 3D visualization: The chatbot can generate 3D
visualizations of the proposed layouts, allowing
stakeholders to review and approve the design
before implementation [77].

Real-time adaptation
and optimization

During an outbreak, the situation
can change rapidly. Chatbots can
continuously monitor data and
adapt the design of the
space accordingly.

• Patient flow management: The chatbot can
analyze patient flow data and adjust the layout to
optimize efficiency and minimize bottlenecks [79].

• Resource allocation: Based on real-time data on
resource utilization, the chatbot can recommend
adjustments to staffing levels, equipment
allocation, and supply chain management [80].

• Infection control: The chatbot can update infection
control measures based on the latest information
about the pathogen and the evolving outbreak
dynamics [81].

One of the potential benefits of using artificial intelligence-based chatbots in this
context lies in their ability to integrate and analyze data from different sources. Linking
chatbots to databases containing information on various pathogens—including modes
of transmission, incubation periods, virulence, and susceptibility to different interven-
tion measures—could support the definition of design parameters for spaces dedicated
to managing epidemic outbreaks. Although chatbots cannot independently determine
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the transmissibility of a pathogen, they can be used to provide information from reliable
sources, facilitating access to official guidelines on containment measures such as ventila-
tion, isolation, and personal protective equipment. However, it is important to note that
the reliability of such tools depends on the quality of the underlying data and their ability
to interpret it. Because chatbots are probabilistic models of language, they may generate
responses that appear plausible but are not necessarily correct. Therefore, their use should
be considered a decision support rather than a definitive source, and any recommendations
should be verified by experts in the field before being implemented.

Beyond informing initial design parameters, AI-driven chatbots can play a crucial
role in rapid prototyping and space planning. By leveraging algorithms capable of gen-
erating multiple layout options based on specific outbreak characteristics and projected
patient volumes, chatbots can significantly accelerate the design process. This can involve
recommending modular designs that are easily assembled and reconfigured, optimizing
the space allocation for different functions such as triage, testing, and isolation, and even
generating the 3D visualizations of proposed layouts for stakeholder review. This rapid
prototyping capability is essential for the timely deployment of adaptable healthcare spaces
during outbreaks.

The dynamic nature of outbreaks demands continuous monitoring and adaptation. AI-
driven chatbots can excel in this area by analyzing real-time data on patient flow, resource
utilization, and emerging pathogen characteristics. This information can be used to adjust
the layout of healthcare spaces, optimize staffing levels and equipment allocation, and
update infection control protocols as needed. For example, a chatbot can analyze patient
flow data to identify bottlenecks and recommend adjustments to the layout to improve
efficiency and minimize wait times. Similarly, real-time data on resource utilization can
inform decisions regarding the allocation of medical personnel, equipment, and supplies.

Furthermore, integrating chatbots with building management systems offers the
potential for the automated control of environmental parameters. This can include adjusting
ventilation rates and air filtration settings based on the specific needs of the outbreak,
maintaining optimal temperature and humidity levels to inhibit pathogen growth, and
optimizing energy consumption by adjusting lighting and climate control systems based
on occupancy patterns. This level of integration can significantly enhance the efficiency
and effectiveness of outbreak management.

4.4. Example Scenario

AI-driven chatbots can be valuable tools for rapidly designing and adapting spaces to
manage different outbreaks, taking into account the specific characteristics of each pathogen
(Figure 2).

The chatbot can access data on the virus’s transmission characteristics and recommend
a design that prioritizes airborne infection control measures, such as negative pressure
rooms, HEPA filtration, and designated airflow patterns. As the outbreak progresses and
more data become available, the chatbot can adapt the design to optimize patient flow,
resource allocation, and infection control protocols (Figure 2). By leveraging AI-driven
chatbots, we can create more responsive and adaptable healthcare spaces that are better
equipped to manage the unique challenges of different outbreaks.
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Figure 2. Example scenario of a novel hypothetic respiratory virus outbreak.

5. Chatbots as Statistical Consultants in Infectious Disease Settings:
Potential and Reliability

In the field of infectious disease management, chatbots with advanced artificial intelli-
gence, such as ChatGPT, are being studied not only as tools for disseminating information,
but also to assist in data analysis and decision making. These artificial intelligence systems
have the potential to guide public health officials, researchers, and even less experienced
users through the complex process of selecting appropriate statistical techniques for epi-
demic data analysis. With the increasing use of large-scale data collection during epidemics,
chatbots could provide accessible real-time advice on which statistical methods to employ
based on the characteristics of the available data. However, the effectiveness and reliability
of chatbots in this advisory role depend on several factors, including the accuracy of their
recommendations, their interpretability, and their potential limitations.

5.1. Potential of Chatbots as Statistical Advisors

When faced with questions such as "I have this data set, what statistical method
should I use?", chatbots such as ChatGPT can quickly generate plausible answers by
leveraging their knowledge of general statistical principles. For example, if a user presents
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time series data on infection rates, the chatbot might suggest using techniques such as
ARIMA (AutoRegressive Integrated Moving Average) models or exponential smoothing to
predict future trends [82]. For spatial data involving epidemic outbreaks, the chatbot might
recommend geospatial analysis tools such as kriging or spatial autocorrelation, which
are useful for identifying disease clusters [83]. These recommendations can be useful,
especially in situations where human expertise is not readily available, making chatbot-
guided suggestions a scalable solution for public health workers during emergencies.

One of the strengths of the chatbot is its ability to handle different types of data. If
asked a question about how to handle multivariable datasets, the chatbot might suggest
principal component analysis (PCA) to reduce data dimensionality and identify key factors
driving disease progression [84]. Where the user is dealing with survey data from affected
populations, ChatGPT could recommend logistic regression or chi-square tests to explore
relationships between variables, such as symptoms and risk factors. This wide range of
functionality could support decision making at various stages of the epidemic response,
from initial surveillance to resource allocation and intervention evaluation.

5.2. Evaluating the Reliability of Chatbots in Recommending Statistical Techniques

Although artificial intelligence chatbots such as ChatGPT have considerable potential
to offer statistical guidance, their reliability in providing accurate and contextually appro-
priate recommendations is a critical issue. Language models are trained on vast datasets,
often encompassing a wide range of disciplines, including statistics. However, they lack a
deep understanding of the specific nuances of a given dataset or the subtleties of research
questions in infectious disease contexts. This raises several reliability issues:

1. Accuracy of recommendations: AI chatbots are not immune from making mistakes or
offering incorrect statistical advice. Although ChatGPT may suggest well-known sta-
tistical methods, it does not always recommend the techniques best suited to a specific
dataset. For example, it might suggest the use of a linear regression when, given the
distribution of the data, a nonlinear model would be more appropriate. Studies have
shown that artificial intelligence models, despite their sophistication, are often unable
to fully understand the domain-specific requirements of medical or epidemiological
datasets [85]. This limitation could lead to erroneous recommendations, especially
when users are unfamiliar with the subtleties of statistical techniques.

2. Assumptions and limitations: Every statistical technique has inherent assumptions,
such as the normality of data distribution, independence of observations, or ho-
moscedasticity. Chatbots do not always provide sufficient warning or detail about
these assumptions, potentially leading to the misuse of statistical methods. For ex-
ample, recommending ANOVA (analysis of variance) without clarifying the need for
homogeneity of variances could lead to erroneous analysis results [86]. In this regard,
human statisticians possess the nuances of judgment necessary to adapt methods
based on data anomalies, something that current chatbots lack.

3. Interpretability and user understanding: Even when ChatGPT correctly identifies
an appropriate statistical method, explaining why a particular technique should be
used remains a challenge. Although the model can describe statistical concepts in
general terms, it does not always provide clear guidance on why certain assumptions
are important or how to interpret the results in a meaningful way. This limitation
could be particularly problematic for users who do not have a strong background
in statistics. A chatbot might recommend logistic regression for analyzing binary
outcomes, but not guide the user through the necessary diagnostic tests, such as
testing for multicollinearity or overfitting [87]. The absence of in-depth explanations
could hinder the user’s ability to effectively apply the recommended techniques.
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4. Dependence on training data: ChatGPT and similar models are trained on large
datasets that include vast amounts of information, but are not necessarily up-to-date
with the latest advances in statistical theory or infectious disease epidemiology. This
lag in knowledge could cause the chatbot to suggest outdated or less efficient methods.
In addition, these models are based on probabilities derived from training data, which
means they lack a true understanding of the problem at hand. They generate answers
based on patterns and correlations in the data they have seen, but they do not reason
about the statistical principles involved as a human expert would [88].

5. Risk of misinformation: One of the significant risks of using AI chatbots for statistical
guidance is the potential for misinformation. ChatGPT, while very adept at generating
human-like text, can sometimes produce “hallucinations”, generating plausible but
factually incorrect information [89]. In a statistical context, this could lead the chatbot
to recommend inappropriate or even nonexistent methods. For example, it might
suggest a test or statistical procedure that is not applicable to the user’s dataset or, in
extreme cases, does not exist in the statistical literature. In the world of public health,
where data-driven decisions can impact millions of people, the consequences of such
errors could be severe.

5.3. Enhancing the Reliability of Chatbots: A Hybrid Approach

To mitigate the risks associated with chatbot recommendations, a human-in-the-
loop approach is advisable, especially in high-risk settings such as infectious disease
management. In this context, chatbots provide preliminary recommendations that can be
verified and refined by human experts. This hybrid approach ensures that the scalability
and efficiency of AI is balanced with the critical judgment and domain-specific expertise
provided by human statisticians. In addition, human experts can also review the chatbot’s
suggestions, providing additional insights or corrections that can improve the quality of
the analysis. In addition, integrating real-time feedback systems that allow users to report
inaccuracies or clarify uncertainties can help improve the chatbot’s performance over time,
increasing both accuracy and user confidence. Regular updates of the chatbot’s training
data can also ensure that it remains current with the latest developments in statistical
methods and public health practices.

Future developments could focus on creating domain-specific chatbots trained on
datasets directly relevant to public health and epidemiology. By incorporating knowledge
about recent infectious disease outbreaks and advances in statistical methods adapted to
these contexts, chatbots could become more reliable tools for public health professionals.
This would also involve incorporating more sophisticated models for error detection, al-
lowing the chatbot to flag potential risks in its recommendations and alert users to seek
expert advice. Furthermore, collaboration with interdisciplinary teams that include statisti-
cians, epidemiologists, and data scientists can help refine the chatbot’s capabilities. This
collaboration can improve the chatbot’s ability to provide personalized recommendations
that closely align with the specific needs of public health practitioners.

Artificial intelligence-based chatbots such as ChatGPT offer significant potential as
statistical consultants in infectious disease settings, providing quick and accessible guidance
on the use of appropriate analytical techniques. However, their recommendations should
not be considered a substitute for expert judgment. Although these systems can suggest
general methods, their limitations—such as lack of deep understanding, potential for
error, and inability to explain complex statistical nuances—mean they should be used
with caution. The future of chatbots in this role likely lies in hybrid models that combine
the scalability of AI with the critical oversight of human experts, ensuring more reliable
and contextually appropriate statistical advice. As public health continues to evolve in an
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increasingly data-driven world, the integration of these technologies can improve decision-
making processes and, ultimately, health outcomes.

6. Clinical Insights from an Infectious Disease Specialist
6.1. AI-Powered Chatbots for Clinical Management During Outbreaks

Infectious disease outbreaks pose significant challenges to global health security,
placing immense strain on healthcare systems. The rapid spread of infection, coupled with
often-limited resources, necessitates efficient and timely patient management. Artificial
intelligence-powered tools, particularly chatbots, offer a promising avenue for enhancing
patient care and optimizing resource allocation during these critical periods. Chatbots can
provide readily accessible information, facilitate preliminary triage, and enable remote
monitoring, contributing to a more sustainable global healthcare paradigm [90].

Artificial intelligence is rapidly transforming healthcare delivery within hospitals and
clinics. Its applications span various areas, from enhancing clinical decision making and
streamlining operational efficiency to improving diagnostic accuracy and revolutionizing
patient care. The evolution of AI has led to the development of increasingly sophisticated
chatbots with diverse healthcare applications [91]. Historically, programs like MYCIN [92]
aided physicians with differential diagnosis based on patient symptoms. Modern chat-
bots can play a crucial role during infectious disease outbreaks by providing up-to-date
information about symptoms, prevention measures, and treatment options.

An example of such advanced AI technology is the BERT-based medical chatbot,
which leverages Bidirectional Encoder Representations from Transformers (BERT) [93], a
state-of-the-art deep learning model for natural language understanding (NLU). BERT,
unlike traditional models that process text in a single direction (left-to-right or right-to-left),
considers the context of a word by looking at both the words that come before and after
it. This makes it highly effective in understanding the contextual meaning of sentences,
especially in complex domains like medicine, where jargon and linguistic nuances are
critical for accurate interpretation. Figure 3 illustrates the architecture of a BERT-based
medical chatbot [94], where the BERT model processes user queries, extracts medical entities
(such as symptoms or conditions), and generates relevant responses. Key components of
the system include the user interface (frontend), which allows users to interact with the
chatbot via text or voice input; the text processing module, which preprocesses queries by
performing tokenization, stop word removal, stemming, lemmatization, and Part-of-Speech
(PoS) tagging [95]; the BERT model, which parses text bidirectionally, recognizes medical
entities and classifies user intent; context management, which maintains the history and
context of the conversation to ensure consistent responses in complex interactions; the
entity and intent recognition unit, which extracts medical entities and classifies intent using
techniques such as Conditional Random Fields (CRFs) [96] and softmax [97]; dialogue
management and response generation, which combines predefined templates, retrieval
methods from a medical knowledge base, and generative templates to produce appropriate
responses; the medical knowledge base, an up-to-date database with information on
symptoms, conditions, treatments and guidelines, consulted by the chatbot to provide
accurate advice; and finally, response delivery (backend), which sends the generated
response to the user via the frontend interface, completing the interaction cycle.

They can also facilitate appointment scheduling and answer frequently asked ques-
tions, reducing the burden on healthcare workers. In particular, AI’s evolution in healthcare
has been driven by advancements in machine learning and neural networks, coupled with
increased computational power and data availability. These technologies are empowering
healthcare professionals with tools to analyze patient data more effectively, leading to
more precise diagnoses and personalized treatment plans. AI is also optimizing hospital
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operations by automating administrative tasks, improving patient flow, and enhancing
resource allocation. In medical diagnostics, AI is accelerating image analysis in radiology
and pathology, enabling faster and more accurate results [98].

Figure 3. An example of BERT-based medical BOT [94].

Furthermore, chatbots contribute significantly to telehealth delivery, encompass-
ing remote patient monitoring, medication reminders, and personalized health ad-
vice (https://www.irjmets.com/uploadedfiles/paper//issue_4_april_2024/53081/final/
fin_irjmets1713334010.pdf, accessed on 9 March 2025) virtual assistance, creating new possi-
bilities for patient–physician interaction. For example, recent advancements in voice-based
AI technologies, as highlighted by Jadczyk et al. [99], demonstrate the potential of voice
chatbots to streamline healthcare delivery during pandemics. These systems can automate
patient triage, provide real-time health information, and support remote monitoring, re-
ducing the burden on healthcare providers and improving patient outcomes. Figure 4
illustrates the workflow of an AI-driven voice chatbot in healthcare delivery, showcasing
its integration with clinical decision support systems and electronic health records. The
workflow begins with the user (patient or healthcare provider) interacting with the chatbot
through a voice interface, such as a smartphone or smart speaker. The chatbot processes
the user’s input using NLP techniques and connects to a clinical decision support system
(CDSS) to provide accurate, context-aware responses. The system then integrates the col-
lected data with electronic health records (EHRs), enabling real-time updates and alerts for
healthcare providers. This seamless integration allows for efficient patient triage, remote
monitoring, and personalized care, reducing the workload on healthcare professionals and
improving patient outcomes.

https://www.irjmets.com/uploadedfiles/paper//issue_4_april_2024/53081/final/fin_irjmets1713334010.pdf
https://www.irjmets.com/uploadedfiles/paper//issue_4_april_2024/53081/final/fin_irjmets1713334010.pdf
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Figure 4. Workflow of the AI-driven voice chatbot in healthcare delivery [99].

6.2. Enhancing Outbreak Response with Chatbots: Benefits and Challenges in Clinical
Management of Patients

AI-powered chatbots can play a significant role in improving clinical management
during infectious disease outbreaks. These tools offer tangible benefits for both patients and
healthcare professionals by optimizing workflows and enhancing operational efficiency.

For patients, chatbots serve as an immediate source of information and support.
They can guide users through symptom assessment and triage, helping them determine
the appropriate level of care and potentially reducing unnecessary hospital visits [3].
This is particularly crucial during outbreaks, as it minimizes exposure risk and alleviates
the burden on healthcare facilities. Additionally, chatbots can disseminate accurate and
up-to-date information about the outbreak, counteracting misinformation and enabling
individuals to make informed decisions [3]. For patients managing their illness remotely,
chatbots can facilitate remote monitoring by tracking symptoms and vital signs, allowing
for the early detection of any health deterioration [100]. They can also provide medication
reminders, support treatment adherence, and offer basic mental health assistance to help
manage the stress and anxiety often associated with public health emergencies [101].
Furthermore, by analyzing individual patient data, chatbots can generate personalized
health recommendations tailored to specific needs.

Healthcare professionals also stand to benefit from chatbot integration. By handling
routine inquiries, distributing important updates, and reinforcing clinical guidelines, chat-
bots can reduce the workload of medical staff, enabling them to focus on more complex
cases and direct patient care [101]. Additionally, chatbots can assist with contact tracing
efforts and collect valuable epidemiological data for research purposes.

However, to ensure responsible and effective deployment, several challenges must
be addressed. The accuracy and reliability of chatbot-provided information must be
continuously monitored [102]. Safeguarding data privacy and security is paramount,
and chatbot interfaces should be designed to support linguistic accessibility and cultural
sensitivity. Furthermore, seamless integration with existing healthcare systems is crucial
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for successful implementation. Building trust and acceptance among both patients and
healthcare providers is another key factor in widespread adoption.

It is important to emphasize that chatbots are not intended to replace healthcare
professionals but rather to complement existing healthcare strategies. Their integration can
enhance the quality and efficiency of healthcare delivery during outbreaks by providing
timely and targeted support (Figure 5).

Figure 5. The role of chatbots in epidemic response.

6.3. Future Directions and Research Needs

Future research should focus on exploring the potential of AI-powered chatbots for
handling more complex tasks, such as assisting with preliminary diagnosis and offering
personalized treatment recommendations. A thorough evaluation of the effectiveness of
chatbots in real-world outbreak scenarios is essential to assess their true impact on patient
outcomes and the performance of healthcare systems. Ethical considerations regarding the
use of chatbots, especially during public health emergencies, must be carefully addressed
to ensure they are deployed responsibly and equitably. Despite these challenges, chatbots
have considerable potential to transform patient management during infectious disease
outbreaks. By providing timely and accurate information, facilitating remote monitoring,
and alleviating the strain on healthcare systems, chatbots can contribute to more effective
and equitable responses to public health crises. To fully realize their benefits, further
research, careful implementation, and continuous evaluation are necessary. This will help
maximize the advantages while minimizing the potential risks associated with the adoption
of this emerging technology.

7. Challenges and Limitations of AI Chatbots in Infectious
Disease Outbreaks

The integration of chatbots and large language models (LLMs) into healthcare com-
munication during epidemics offers some notable advantages such as innovative ways to
both collect and disseminate information and opportunities for resource optimization.
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While these potential benefits can significantly support doctors, policymakers, and
citizens by providing timely information and aiding in resource management, this class of
software applications also present important limitations and risks in the context of infectious
diseases, which must be known to allow for their cautious and responsible implementation.

The challenges and risks discussed below are similar to those associated with medical
and health issues affecting individuals. However, they are intensified by the scale of those
impacted, the uncertainty surrounding the nature of symptoms, the relationship between
symptoms and disease severity, and the ambiguity regarding modes of disease transmission
and mitigation. In other words, in what follows, we will survey problems that are known
to be related to the use of conversational agents in the management of health issues, but
exacerbated by the contexts in which epidemics and pandemic occur, that is, in contexts of
heightened severity, spread, and uncertainty.

The main limitations and risks can be grouped in two broad ambits: capacity and
alignment. Capacity refers to the intrinsic abilities of these systems in terms of their
functions and skills. This domain encompasses quality dimensions such as accuracy,
reliability, and effectiveness. Limitations in capacity involve technical shortcomings like
misinformation propagation, the inability to interpret complex or ambiguous user inputs,
and challenges in processing real-time updates. Essentially, capacity-related issues regard
the tasks these AI systems are not capable of carrying out as expected and the kind of
failure they can exhibit.

Alignment, on the other hand, pertains to the extent to which the capacities of these AI
systems are coherent with the values, principles, and norms of the society and community
they serve. This includes compliance with ethical standards, cultural sensitivities, and legal
regulations such as data protection laws and medical practice guidelines. Limitations in
alignment involve ethical dilemmas, privacy violations, lack of transparency, and potential
misuse of technology. In essence, alignment-related issues regard shortcomings of these
systems in adhering to societal expectations and legal requirements. For both ambit, we
will discuss four main challenges, as they are reported in Table 3. The following sections
will explore each of these challenges in detail, highlighting the critical issues that emerge in
infectious disease contexts.

Table 3. Overview of issues related to AI-based chatbots in public health emergencies.

Capacity Information Accuracy and Reliability

1. Unpredictability and Reliability Issues

2. Dissemination of Outdated Information

3. Amplification of Misinformation

4. Technical Limitations in Communication

Alignment Ethical and Legal Concerns

1. Ethical and Accountability Concerns

2. Privacy and Data Security Risks

3. Ineffectiveness with Diverse Populations

4. Resource Allocation Concerns

5. Unpredictability and Reliability Issues

7.1. Unpredictability and Reliability Issues

The unpredictability and potential unreliability of LLMs, such as GPT-3 and GPT-4,
raise significant challenges when used in decision support tools during health crises like
pandemics. These models generate responses based on patterns from extensive datasets
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without true understanding, which can lead to “hallucinations”, that is, plausible yet
factually incorrect information [89]. In critical situations, such misinformation can mis-
lead individuals, potentially worsening disease spread. While LLMs offer scalable, im-
mediate responses, their risks can undermine public trust and hinder effective health
interventions [103].

Although improvements have been made to reduce inaccuracies [10], LLMs still
struggle with maintaining factual consistency. Further research is needed to develop
evaluation metrics and real-time verification systems to ensure reliability in high-stakes
domains [104]. Enhancing training protocols by incorporating domain-specific data and
real-time fact-checking algorithms are key technical measures to improve AI reliability [105].
Tools that promote AI explainability can also help identify and correct errors [106].

Beyond technical solutions, socio-technical measures are essential. Human-in-the-loop
systems allow experts to validate AI outputs, reducing the risk of misinformation [107].
Educating users on AI’s limitations and establishing clear regulatory frameworks are
essential for responsible AI deployment in healthcare [108].

Research should focus on addressing AI hallucinations, enhancing real-time verifica-
tion, and understanding how users interact with AI-generated health information [109,110].
Regulatory frameworks must evolve to ensure the safe, ethical deployment of AI in health
crises [111].

7.2. Dissemination of Outdated Information

During health crises, AI chatbots that rely on outdated data risk providing incor-
rect guidance, leading to public confusion and non-compliance with current health mea-
sures [112]. AI models, especially LLMs, often require continuous updates to reflect the
latest health guidelines, yet maintaining this real-time accuracy is technically challenging
and resource-intensive. While dynamic knowledge graphs and incremental learning tech-
niques show promise for keeping AI systems updated [113,114], gaps remain in ensuring
the real-time integration of new data during fast-changing situations like pandemics.

Technical measures, such as integrating real-time data from authoritative sources via
APIs, are necessary to ensure the accuracy of chatbot responses [115]. A modular AI design
allows for more flexible updates by separating the knowledge base from the language
model, which can significantly reduce the need for full retraining [116]. Incremental
learning techniques can also enhance the system’s adaptability, enabling it to learn from
new information without large-scale retraining [117].

Socio-technical interventions, such as partnerships with health authorities like the
WHO and CDC, ensure that AI systems receive timely updates [118]. User feedback systems
allow individuals to report outdated information, helping improve chatbot accuracy and
accountability [119]. Additionally, notifying users when significant updates occur fosters
transparency and trust [120].

Key research areas include improving real-time update integration and maintaining
data consistency in AI models [121]. Understanding how outdated information affects user
behavior and trust is essential for developing design strategies that promote engagement
with accurate, up-to-date data [122].

7.3. Amplification of Misinformation

Epidemics often trigger an “infodemic”—an overabundance of information, including
rumors and misinformation [118]. AI chatbots, if not properly monitored, can uninten-
tionally amplify false information due to their perceived authority, leading to harmful
behaviors and undermining public health efforts [123]. Detecting misinformation is chal-
lenging because it evolves rapidly and is often context-dependent. While machine learning
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algorithms for misinformation detection exist, their integration into conversational AI
systems remains underexplored [124].

To mitigate misinformation, it is necessary to integrate advanced NLP models ca-
pable of identifying false information in chatbot responses [125]. Chatbots should also
cross-reference trusted databases from health organizations to ensure the reliability of the
information provided [105]. Socio-technical measures, such as user reporting mechanisms
and transparent disclaimers, foster a collaborative and trustworthy environment [126].
Partnering with fact-checking organizations can ensure that chatbots remain up-to-date
with verified corrections [127].

Key research areas include developing real-time misinformation detection in AI chat-
bots, understanding the impact of misinformation on user behavior, and maintaining
user trust through transparent content moderation policies [128]. Ethical considerations
also require collaboration with policymakers to ensure responsible chatbot deployment,
emphasizing transparency and accountability [111].

7.4. Ethical and Accountability Concerns

The deployment of AI chatbots in healthcare during crises raises ethical and account-
ability concerns, as users may over-rely on them for medical advice, potentially leading to
self-diagnosis and the avoidance of professional consultation [129]. When chatbots provide
incorrect or misleading information, determining liability is complex, as the advice comes
from an AI system rather than a human. Current frameworks do not sufficiently address
these issues, leaving gaps in legal and ethical responsibility [130].

While AI chatbots offer scalable solutions for disseminating health information, they
also pose risks such as misdiagnosis and data privacy breaches. Users tend to trust these
systems, which increases the likelihood of over-reliance on chatbot advice [131]. Balancing
the benefits of widespread access to health information with the potential harms requires a
comprehensive approach that includes technical and socio-technical measures.

On the technical side, ensuring transparency in chatbot decision making is fundamen-
tal for building trust. Chatbots should provide clear explanations for their recommenda-
tions, and safety protocols should be in place to alert users to seek professional help when
necessary [132]. Protecting user privacy through compliance with regulations like GDPR is
also essential to maintain confidentiality and secure sensitive data [133].

Socio-technical interventions are equally important. Ethical guidelines tailored to
AI in healthcare must be integrated into chatbot design to ensure patient safety and fair-
ness [134]. Educating users about the limitations of AI chatbots can prevent over-reliance
and reinforce the importance of consulting healthcare professionals when needed [135].
Clear accountability frameworks should define the responsibilities of AI developers and
healthcare providers to ensure ethical compliance and legal clarity [136].

Research is needed to develop frameworks for determining accountability when AI
chatbots cause harm and to explore how users’ over-reliance on AI affects their health
outcomes [137]. Additionally, protecting user privacy while enabling personalized health-
care remains a critical challenge. Research into advanced encryption and anonymization
techniques is essential for ensuring data security while providing personalized health
solutions [138].

7.5. Privacy and Data Security Risks

The deployment of AI chatbots in healthcare often requires collecting personal health
information (PHI) to provide tailored advice, raising significant privacy concerns [139].
Ensuring compliance with regulations such as HIPAA and GDPR is essential, but many
chatbot platforms may lack the necessary infrastructure, posing risks to user data secu-
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rity [133]. The challenge is especially relevant during epidemics when individuals may
share more sensitive data, increasing the potential for breaches that can lead to identity
theft, discrimination, and a loss of trust in healthcare systems [63].

One of the key challenges is ensuring that chatbots collect only the minimum amount
of data necessary to provide accurate responses. The principle of data minimization
should be a cornerstone of chatbot design, ensuring that sensitive information is not
unnecessarily stored or shared [140]. Additionally, end-to-end encryption and secure
authentication protocols are critical to safeguarding PHI [141]. These technical measures
must be complemented by user education, ensuring that individuals understand how
their data are being used and what protections are in place [118]. Another important
consideration is the transparency of data usage. Users should be informed about the
types of data being collected, the purposes for which it will be used, and the entities
with which it may be shared. This transparency is crucial for building trust, particularly
in communities that may be skeptical of AI technologies [142]. Furthermore, real-time
feedback mechanisms should be implemented to allow users to report privacy concerns or
data breaches, enabling the continuous improvement of chatbot security measures [143].
The issue of data ownership also warrants attention. In many cases, the data collected by
chatbots are stored and analyzed by third-party providers, raising questions about who
ultimately controls this information. Clear guidelines and agreements must be established
to ensure that data ownership remains with the individual or the healthcare provider,
rather than the technology vendor [63]. Finally, the long-term storage of health data poses
additional risks. While historical data can be valuable for research and improving chatbot
performance, it also increases the potential for misuse. Policies must be put in place to
ensure that data are anonymized and securely stored, with strict access controls to prevent
unauthorized use [144].

To safeguard PHI, techniques like end-to-end encryption, anonymization, and secure
authentication protocols are critical [141]. Anonymization reduces the risk of data breaches
by ensuring that compromised data cannot be linked to individuals, while multi-factor au-
thentication helps secure access to the chatbot system [143]. Regular security audits should
be conducted to identify and mitigate vulnerabilities in the chatbot infrastructure [144].
Socio-technical strategies are also vital. Compliance with regulations like HIPAA and GDPR
must be demonstrated, and users should be informed about data collection practices and
asked for informed consent [142]. Adopting the principle of data minimization—collecting
only what is necessary for the chatbot’s function—can limit exposure to sensitive data [140].
Educating users on how their data are protected and their rights under privacy laws is
key to fostering trust [118]. Research is needed to explore how AI chatbots can deliver
personalized advice while maintaining compliance with privacy regulations. Incorporating
privacy by design from the outset ensures that privacy considerations are integrated at
every stage of chatbot development [142]. Additionally, advanced techniques like federated
learning and real-time encryption should be investigated to balance data utility and privacy
without compromising chatbot performance [63].

7.6. Ineffectiveness with Diverse Populations

AI chatbots often fail to meet the needs of diverse populations due to linguistic,
cultural, and socioeconomic limitations. These systems struggle to interpret input from
non-native speakers and lack cultural context, leading to miscommunication and misin-
formation, particularly among marginalized communities [145]. This shortfall exacerbates
existing health disparities, as these groups face barriers in accessing reliable health infor-
mation, increasing their risk during epidemics.
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The biases in AI models, stemming from non-representative training data, limit their
effectiveness in underrepresented languages and cultural contexts [146]. While multi-
lingual models and culturally adaptive systems have been developed, significant gaps
remain in scaling these solutions and ensuring they meet the needs of marginalized com-
munities [147]. To address this, expanding training datasets to include more diverse
languages and developing speech recognition systems that accommodate different dialects
are critical steps [148]. In addition to technical innovations, socio-technical measures are
essential. Community-centered design approaches, which involve local populations in
chatbot development, ensure that the technology is culturally relevant and accessible [149].
Collaborations with health agencies and local organizations can help tailor information
dissemination strategies to meet the specific needs of different communities [150]. Fur-
thermore, digital literacy programs are vital for enabling marginalized populations to
effectively engage with AI chatbots, improving access to critical health information. Key
research areas include enhancing AI chatbots for low-resource languages, reducing bias,
and assessing the public health impacts of communication barriers created by ineffective AI
systems. Participatory design methods, which involve end-users in chatbot development,
are essential for increasing engagement and trust among marginalized communities [151].

7.7. Technical Limitations in Communication

AI chatbots and LLMs face significant technical challenges in effectively communicat-
ing with users during health crises, often struggling with ambiguous queries, slang, and
emotional cues. The misinterpretation of symptoms or concerns can result in inappropriate
or unsafe advice, delaying necessary medical intervention [152]. This problem is exacer-
bated by limitations in NLP, as chatbots often fail to comprehend nuanced language or
emotional states [153].

While transformer-based models like BERT and GPT-3 have improved language un-
derstanding, they still struggle with context-specific slang and emotion recognition [154].
Emotion recognition, a key area for improvement in healthcare chatbots, remains under-
explored, and integrating it into real-world applications is challenging [155]. Expanding
chatbot training datasets to include slang, colloquial language, and regional dialects is an
important step for improving communication with diverse populations [156].

To address these challenges, adopting advanced NLP techniques and emotion recog-
nition technologies is essential. Context-aware algorithms and multimodal systems that
combine text analysis with speech and emotion recognition offer promising solutions for
improving chatbot communication [157]. In addition, human–AI collaboration is also of
paramount importance—systems should allow human experts to intervene when a chatbot
detects ambiguity or emotional distress, ensuring appropriate responses [158,159].

User education is also important; informing users about chatbot limitations and
encouraging clear communication can reduce misunderstandings [160]. Feedback mecha-
nisms that enable users to report errors can lead to continuous improvements in chatbot
performance [161].

Research is needed to explore how AI chatbots can better interpret ambiguous queries
and context-specific language, especially in healthcare. Developing domain-specific lan-
guage models and integrating emotion recognition technologies are critical steps toward
improving chatbot effectiveness in high-stakes health scenarios [48]. Interdisciplinary
approaches from linguistics, psychology, and human–computer interaction will be vital for
enhancing chatbot communication [162].
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7.8. Resource Allocation Concerns

The deployment of AI chatbots during health crises raises concerns about resource
allocation, as investment in these technologies may divert funding and attention from es-
sential public health interventions, such as vaccination campaigns and contact tracing [163].
While chatbots offer scalability and the ability to disseminate information quickly, their
cost-effectiveness and impact on epidemic management remain uncertain [164]. Allocating
resources to chatbots without clear evidence of their effectiveness may reduce the overall
impact of traditional health measures [165].

To address these challenges, chatbots should be designed with cost-effective strategies
in mind, such as using open source platforms and modular frameworks to enable scalability
across different crises [166]. Integration with existing public health systems is a very
relevant factor for ensuring that chatbots complement, rather than disrupt, traditional
interventions [167]. Additionally, pilot programs and robust evaluation mechanisms can
help assess chatbot effectiveness before wider deployment [168]. Socio-technical strategies
are also important. Decision-making frameworks that evaluate the cost-effectiveness
of chatbots should be implemented to ensure resources are allocated efficiently [169].
Engaging public health professionals, policymakers, and community representatives in the
development process ensures that chatbots meet public health needs and do not undermine
essential services [170].

Research is needed to compare the cost-effectiveness of chatbots with traditional public
health interventions, explore integration frameworks that align chatbot deployment with
existing health goals, and assess the long-term impact of chatbot investments on public
health infrastructure [171].

8. Conclusions
AI-based chatbots have emerged as valuable tools in managing public health emergen-

cies, particularly during infectious disease outbreaks. Their ability to provide immediate
and reliable responses enhances communication between health authorities and the public,
reducing anxiety and confusion while facilitating the timely dissemination of essential
health information. However, the integration of these technologies into public health
infrastructures presents several challenges that require careful consideration.

A primary concern is ensuring the accuracy and reliability of the information provided
by chatbots. The rapid evolution of health crises demands real-time data integration,
robust misinformation detection, and collaboration with health authorities to prevent the
dissemination of outdated or false information. Ethical and accountability issues further
complicate deployment, as misinformation during epidemics can have severe consequences.
Addressing these challenges necessitates technical transparency, safety measures, and the
establishment of ethical guidelines, user education, and clear accountability frameworks.

Privacy and data security risks also represent significant obstacles. AI chatbots han-
dling sensitive health information must comply with stringent data protection laws, such
as GDPR, and implement robust technical safeguards to maintain user trust. Transparency
regarding data usage and user education on privacy measures are critical components in
fostering public confidence in these systems.

Another key challenge is ensuring accessibility for linguistically and culturally diverse
populations. Chatbots must be equipped with expanded language support, improved
cultural competence, and enhanced NLP capabilities. Socio-technical strategies, such as
community engagement and digital literacy programs, can help bridge communication
gaps and mitigate health disparities. Incorporating emotion recognition, fostering human–
AI collaboration, and promoting user education will contribute to making these tools more
inclusive and effective.
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The successful deployment of AI chatbots in public health settings requires a balanced
approach that integrates both technical and socio-technical factors. Cost-effectiveness,
scalability, and integration with existing healthcare systems are essential, alongside active
stakeholder engagement and resource allocation. Evaluating long-term impact, effective-
ness, and adaptability will shape the future role of AI in healthcare.

Looking forward, the potential of AI chatbots in public health remains significant.
However, realizing this potential demands continuous research, human oversight, and a
commitment to ethical and responsible AI deployment. By fostering collaboration between
artificial intelligence experts, public health professionals, legislators, and local communities,
we can develop AI systems that are not only effective and scalable but also equitable and
trustworthy. The future of AI chatbots in healthcare will be determined by our ability to
navigate these challenges, ensuring that these technologies contribute meaningfully to
resilient and adaptive public health systems.
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