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Abstract: Despite the stunning speed with which highly effective and safe vaccines have been
developed, the emergence of new variants of SARS-CoV-2 causes high rates of (re)infection, a major
impact on health care services, and a slowdown to the socio-economic system. For COVID-19,
accurate and timely forecasts are therefore essential to provide the opportunity to rapidly identify risk
areas affected by the pandemic, reallocate the use of health resources, design countermeasures, and
increase public awareness. This paper presents the design and implementation of an approach based
on autoregressive models to reliably forecast the spread of COVID-19 in Italian regions. Starting
from the database of the Italian Civil Protection Department (DPC), the experimental evaluation was
performed on real-world data collected from February 2020 to March 2022, focusing on Calabria, a
region of Southern Italy. This evaluation shows that the proposed approach achieves a good predictive
power for out-of-sample predictions within one week (R-squared > 0.9 at 1 day, R-squared > 0.7 at
7 days), although it decreases with increasing forecasted days (R-squared > 0.5 at 14 days).

Keywords: SARIMA; time series regression models; forecasting; epidemiology; COVID-19; SARS-CoV-2;
Italy; Calabria

1. Introduction

In December 2019, the new Coronavirus, SARS-CoV-2 [1], emerged and into a world
population without proper specific immunization. Due to its high infectivity, the virus
spread worldwide, beginning the new current pandemic [2]. During the epidemic and
subsequent vaccine immunization, one of the main issues was the emergence of several
Variants of Concern (VOC) [3] with consequent re-emergence of new infection cases. In par-
ticular, several notable variants of SARS-CoV-2 have emerged in recent months [4], such as
B.A.2 [5], which expresses a very high infectivity rate and pathogenesis, and B.A.2.2 [6],
responsible in Hong Kong for the significant increase in lethality among the unvaccinated
and uninfected elderly and children.

This highlighted the importance of following the contagion evolution on a temporal
scale inside the various populations, especially to define the restarting moment of new
cases to prevent severe clinical cases, along with ICU admissions and deaths, to determine
needed non-pharmacological intervention (NPI), to test the success or failure of containment
measures in place, and to guide governments and decision makers. Moreover, it has become
increasingly important to define and refine epidemiological forecasting methods in order
to adequately monitor population infection cases and deaths. SARIMA(X) models are an
example of methods that have already been used for prediction in epidemiology, such as
malaria [7], influenza-like illness [8], dengue hemorrhagic fever [9], West Nile virus [10],
scarlet fever [11], human brucellosis [12], and recently, COVID-19 [13,14].
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This paper presents the design and implementation of an approach based on autore-
gressive models to reliably forecast the spread of COVID-19 in Italian regions. The method
automatically collects daily data on the number of individuals infected with SARS-CoV-2
and performs the following operations: (i) data pre-processing, which consists of turning raw
data into the required format for the purposes of analysis; (ii) predictive modeling, which
regards the training of a model to forecast the number of infections that will happen in a
specific area; (iii) results visualization, which presents the results in a graphical way, allowing
users to visually explore the data.

As a case study, we present here the analysis of the regional trend of SARS-CoV-2
spread in Calabria, a region of Southern Italy, based on open-access coronavirus data
provided by the Italian Civil Protection Department (DPC), starting from 24 February
2020. The results of the experimental evaluation show the effectiveness of the method,
by achieving good accuracy in new infections forecasting within one week.

The rest of the paper is organized as follows. Section 2 outlines the problem state-
ment and describes the proposed approach in detail. Section 3 presents the experimental
evaluation. Finally, Sections 4 and 5 conclude the paper and plan future research works.

2. Materials and Methods

We begin by outlining a proper notation to be used throughout the paper. Let D
be a dataset collecting epidemiological data, where each di is described by the following
tuple: 〈ID, T, NC, DE, RC, HOSP, ICU, TESTS〉, where ID is the identifier of a region, T
is the notification date of an infection, NC indicates new positive cases, DE is the total
amount of deaths, RC refers to the total number of recovered persons, HOSP and ICU
are hospitalized patients with symptoms and in intensive care, respectively, and TESTS
is the number of tests performed. Let T̂ = 〈t̂1, t̂2, . . . , t̂K〉 be an ordered timestamp list and
H = 〈t̂j, t̂j+1, . . . 〉 a future temporal horizon, with j > K.

As mentioned before, the main goal of this work is to reliably predict the number of
new infections at a given timestamp t̂j ∈ K. This is achieved in two steps: (i) estimating
the COVID-19 epidemic risk in Italian regions for identifying high-risk areas (i.e., areas
with particularly high risk of infection due to a high incidence of spread of SARS-CoV-2);
(ii) training a model that given a timestamp t̂j ∈ H states the number of new cases N ∈ NC
that are predicted to happen in such areas at the timestamp t̂j.

Figure 1 presents the general idea of the approach through a graphic representation
of the whole process as a sequence of three steps. The input data of the analysis is the set
of collected epidemiological data to be processed. The second step consists of cleaning,
selecting, and transforming raw data into the desired format so that useful information
can be derived from it. In other words, (i) incorrect and incomplete data are removed;
(ii) a subset of data is selected to make it suitable for analysis; (iii) third-party data from
an external authoritative source are merged with the existing database to enrich collected
data. The third step is aimed at detecting the regions mostly affected by the pandemic
and extracting a prediction model for providing dynamic monitoring of the spread of the
disease, and supporting organizations in the evaluation of the effect of local containment
measures. Finally, results visualization is performed by using an interactive dashboard
to inform citizens in an intuitive way and make the collected data available.

Data 
pre-processing

Predictive 
modeling

Results
visualization

Data
collection

Figure 1. Proposed approach steps.

Figure 2 reports the meta-code of the predictive modeling step. In particular, given
a specific epidemiological dataset, the EstimateTransmission() method estimates the net
reproduction numbers (Rt) (i.e., the average number of new cases generated by an infectious
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case at a given time of the epidemic) based on confirmed cases reported to the National
Integrated Surveillance System (https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-
integrated-surveillance, accessed on 28 May 2022) and stratified by region. Methodological
details can be found in [15].

ALGORITHM
Input :Epimediological dataset D

Output : Net Reproduction Numbers RtPredictive Model M

1 {RRt1 , ...,RRtK} EstimateTransmission (D)

2 {D̂1, ..., D̂K} (D,RRt1 , ...,RRtK)

3 foreach k= 1, ..., K do

4 Mi GeneratePredictionModel (D̂)

5 M M Mi

6 end

7 return (RRt, M)

BuildTSData

U

Figure 2. Workflow of the predictive modeling step.

As soon as this step is completed, the epidemiological dataset D is transformed in
K time series datasets. Specifically, this task is executed by the BuildTSData(), which
transforms D in the time series dataset collection D̂ = {D̂1, . . . , D̂K} where each D̂i is the
time series of new cases of COVID-19 in a region RRti ∈ RRt.

Finally, for each D̂i, the GeneratePredictionModel() method generates a model M to fore-
cast the number of cases that will happen in the specific region RRti. This task is performed
using SARIMA(p, d, q)(P, D, Q)[s] model, i.e., a further development of Autoregressive
Integrated Moving Average ARIMA(p, d, q) with seasonality, where p is the number of
AR autoregression terms, d is the difference order, q is the number of MA sliding average
terms, P refers to the maximum lag order of the seasonal autoregression term, Q is the
maximum lag order of the moving average operator, D is the seasonal difference order,
and s is the seasonal difference cycle step [16]. SARIMA(p, d, q)(P, D, Q)[s] corresponds to
the polynomial operators formula

φp(B)ΦP(Bs)(1− B)d(1− Bs)Dxt = θq(B)ΘQ(Bs)εt (1)

where B is the backshift operator (or lag operator) and Bnxt = xt−n; φp(B) and ΦP(Bs) are
the polynomial operators of AR autoregression (the latter refers to seasonality), θq(B) and
ΘQ(Bs) are the polynomial operators of MA sliding average (the latter refers to seasonality),
where a generic polynomial operator Ωm(Bn) yields

Ωm(Bn) = 1−
m

∑
i=1

ΩiBin (2)

The best model, balancing between complexity and adjustment, has been chosen
via a grid-search to optimize the Bayesian Information Criterion (BIC) [16] resulting in a
SARIMA(0, 1, 1)(1, 0, 1)(7) corresponding to the polynomial operators formula

φ0(B)Φ1(B7)(1− B)1(1− B7)0xt = θ1(B)Θ1(B1)εt (3)

Φ1(B7)(1− B)xt = θ1(B)Θ1(B7)εt (4)

(1−Φ1B7)(1− B)xt = (1− θ1B)(1−Θ1B7)εt (5)

(1− B−Φ1B7 + Φ1B8)xt = (1−Θ1B7 − θ1B + Θ1θ1B8)εt (6)

xt − xt−1 −Φ1xt−7 + Φ1xt−8 = εt −Θ1εt−7 − θ1εt−1 + Θ1θ1εt−8 (7)

which yields the explicit formula

xt = xt−1 + Φ1(xt−7 − xt−8) + εt − θ1εt−1 −Θ1(εt−7 − εt−8) (8)

https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-integrated-surveillance
https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-integrated-surveillance
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where xt is the observed variable at time t, εt is the white noise, identically and inde-
pendently normally distributed with mean 0 and variance σ2, and Φ1, θ1, and Θ1 are
the parameters to be estimated. The chosen model shows fairly acceptable diagnostics
(standardized residuals, estimated density, Q–Q plot, and correlogram) [17,18], as can be
seen in Figure 3.
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Figure 3. SARIMA model diagnostics.

Software

All analyses were performed in Python 3.8.3 with: statsmodels (https://www.statsmodels.
org/stable/index.html, accessed on 28 May 2022), pmdarima (https://pypi.org/project/
pmdarima/, accessed on 28 May 2022) and scipy (https://scipy.org/, accessed on 28 May
2022). Plots have been created with matplotlib (https://matplotlib.org/, accessed on 28 May
2022) and seaborn (https://seaborn.pydata.org/, accessed on 28 May 2022). The complete
Jupyter notebook Python code is publicly available on GitHub at https://github.com/
maxdevblock/covid19_sarima_calabria, accessed on 28 May 2022.

3. Results

The data that we used to evaluate the effectiveness and accuracy of the approach
described above are gathered from the Italian Civil Protection Department (DPC) [19]
dataset and enriched at the provincial level by using an automatic scraper that extracts
and transforms data from the website of the Calabria region (https://regione.calabria.
it/website/, accessed on 28 May 2022) into a machine-readable format in order to make
its reuse easier [20] (text in Italian). The database is freely accessible at https://github.
com/fbranda/covid19-opendata-calabria, accessed on 28 May 2022. Moreover, data are
graphically consultable on the COVIDA platform at https://covida.ml/, accessed on
28 May 2022.

We carried out an experimental evaluation by analyzing the SARS-CoV-2 trend in the
period between 24 February 2020 and 27 March 2022, in Calabria, one of the Italian regions,
which has been most affected during the fourth wave of the pandemic.

Figure 4 shows a preliminary view of the collected epidemiological data. Specifically,
Figure 4A reports the time plot of the new confirmed cases, in which new positive cases
are plotted versus the time of notification. From the plot, we see that the number of cases

https://www.statsmodels.org/stable/index.html
https://www.statsmodels.org/stable/index.html
https://pypi.org/project/pmdarima/
https://pypi.org/project/pmdarima/
https://scipy.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://github.com/maxdevblock/covid19_sarima_calabria
https://github.com/maxdevblock/covid19_sarima_calabria
https://regione.calabria.it/website/
https://regione.calabria.it/website/
https://github.com/fbranda/covid19-opendata-calabria
https://github.com/fbranda/covid19-opendata-calabria
https://covida.ml/
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exhibits a stable trend until December 2021, followed by a sharp increase in infections in
January 2022, due to the circulation of the SARS-CoV-2 Omicron variant.

Omicron’s higher infection rate has pushed health systems to the breaking point,
causing a significant number of deaths and hospitalizations. A clearer view of the Omicron’s
wave can be seen in Figure 4B,C, which show the number of confirmed COVID-19 deaths
and hospitalizations per day, respectively. In particular, the new record for deaths in one
day was 18 on 28 January 2022 (previously it was 17 on 23 November 2020), whereas
the hospitalizations have risen significantly, approaching the values of the prior wave
(446 hospitalizations on 18 January 2022 versus 482 hospitalizations on 26 April 2021).

However, for the innate features of Omicron and the protection offered by the vaccines,
a smaller percentage of COVID patients were admitted to intensive care units (ICUs),
as shown in Figure 4D. The chart clearly shows that during the first phase of Omicron
surge, an initial increase in patients (with 38 persons admitted to ICU on 11 January 2022)
was followed by a smooth decreasing trend.
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Figure 4. Calabria epidemiological data: (A) new positive cases; (B) total amount of deaths; (C) hos-
pitalized patients with symptoms and (D) in intensive care.

To evaluate the impact of SARS-CoV-2 circulation, we analyzed the net reproduction
number Rt (i.e., the transmission potential at a given time t of the epidemic once inter-
ventions are introduced or the susceptibility in the population decreases), calculated by
the research group CovidStat INFN (https://covid19.infn.it/progetto.html, accessed on
28 May 2022). This method uses the growth rate determined over the last 14 days with an
exponential fit to the number of infected persons per day [21] assuming the mean value of
the generation time published by Cereda et al. [22]. As shown in Figure 5, with the national
lockdown imposed in early March 2020, Rt estimates followed a constantly decreasing
trend. Since late May 2020 with the gradual reopening of all activities, Rt started to fluctu-
ate, reaching maximum values around 3 in the week from 3 to 10 August. From 7 January
2021 to 27 March 2022, Rt remained nearly constant at values around 1.5–1.8.

To forecast new COVID-19 cases for the next 14 days, a seasonal autoregressive inte-
grated moving average without exogenous variables (SARIMA) model was used. The data
are characterized by heteroskedasticity (Breusch–Pagan p� 0.01), non-stationarity (Dickey–
Fuller p = 0.76), and seasonality (7 day cycles), as shown in Figure 6.

https://covid19.infn.it/progetto.html
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Figure 5. COVID-19 estimated Rt in Calabria over a 7-day moving average, 24 February 2020–27
March 2022.
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Figure 6. Data tests: (A) Box–Cox transformed data; (B) Box–Cox transformed and differentiated data.

We call “seasonality” the 7-days (circaseptan) observed oscillations because it has been
treated as a seasonal behavior in the SARIMA model, even if, usually in epidemiology,
the seasonality refers to longer periods (such as months). In some countries, additional
hemicircaseptan (3.5 days) and 14-days periodicities have been observed [23]. The circasep-
tan seasonality of COVID-19 new daily cases, which has not been observed or reported in
prior epidemics, is believed to be likely associated with epidemiological and social factors,
mainly testing bias and reporting bias [23–25].

Since, as stated above, such a circaseptan seasonality has not been observed previously in
prior epidemics, this study cannot be compared to prior studies but similar SARIMA models
have been recently tested using circaseptan seasonality to forecast 14 or 28 days [13,14,26] with
comparable results.

We have chosen not to solve heteroskedasticity but to treat it as an inherent feature
also because a transformation can damage results interpretability and not completely solve
the issue [27] that could be reduced with differentiation only. Nevertheless, the data have
been transformed with the Box–Cox method in order to avoid negative results [28].
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Non-stationarity can be solved by first-order differentiation, i.e., SARIMA parameter
d = 1 (Dickey–Fuller p� .01). As expected, differentiating can partially solve heteroskedas-
ticity too (Breusch–Pagan p = 0.33). The 7-days cycle seasonality has been confirmed with
both seasonal decomposition and periodogram [29] that clearly shows first and second
harmonic (7 and 3.5 days). Confidence intervals of 50% and 90% have been chosen for
out-of-sample 14 days’ new cases predictions (see Figure 7).
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Figure 7. Out-of-sample 14-days prediction of daily new COVID-19 cases in Calabria with
SARIMA model.

To define the SARIMA model R-squared (R2) score for out-of-sample 14-days predic-
tion, for each day between 1 January 2021, and 13 March 2022, we have chosen the best
SARIMA model via grid-search (based on previous observations) and forecasted the next
14 days. Pooled R2 score of 14 days of observations and predictions is 0.90 at 1 day, greater
than 0.80 within 6 days, and greater than 0.50 up to 14 days (see Figure 8 and Table 1). These
results confirm the appropriateness of the autoregressive model and its good performance
in the epidemiology domain over rolling time horizons.
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Figure 8. Pooled R2 scores of the 14-days out-of-sample forecast of COVID-19 new daily cases in
Calabria (Italy) with SARIMA model.



Diseases 2022, 10, 38 8 of 11

Table 1. Pooled R2 score for each forecasted day.

Forecasted Days R2

1 0.90
2 0.87
3 0.86
4 0.84
5 0.82
6 0.80
7 0.77
8 0.71
9 0.67
10 0.64
11 0.60
12 0.58
13 0.55
14 0.51

4. Discussion

Italy was the second country to have a large outbreak of infections of novel severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with clusters of cases detected in
Lombardy and Veneto on 21 February 2020, and the first deaths on 22 February 2020 [30,31].
By the beginning of March, the virus had spread to all regions of Italy, and to reduce the
burden of the epidemic on the healthcare settings, the government imposed a national
lockdown [32]. On 27 December 2020, Italy launched the vaccination campaign, which
has significantly reduced the risk of COVID-19 diagnosis and COVID-19-related hospital-
ization and death, particularly starting 14 days from receipt of the second dose; however,
the emergence of new SARS CoV-2 variants underscores the importance of receiving a third
dose of COVID-19 vaccine to protect the high-risk populations (i.e., older adults) [33].

Despite the rapid development of safe and effective vaccines, there is a need to
reduce viral replication, especially if new variants are associated with higher rates of
(re)infection or more severe disease. An ever-increasing volume of epidemiological data
offers the opportunity to apply data analytics methodologies to extract useful models
able to automatically detect both which areas of the country have the highest diagnoses
and how the transmission rate of each specific area varies with respect to the time period.
This knowledge allows us to dynamically monitor the spread of the disease, offering the
opportunity to make better policies to overcome the problem.

Overall, there are three main types of statistical modeling used for predicting infectious
disease spread [34]. The first one among them is the distribution fitting technique, wherein
most of the infectious diseases as a large number of cases are infected is fitted to the
observed data and the parameters of the distribution are estimated based on the sample
observations. For example, Hamzaha et al. [35] analyzed worldwide COVID-19 data to
predict new cases, deaths, and recoveries using distribution methods.

A second type of infectious disease modeling includes epidemiological models (e.g.,
SIR and SEIR), which aim to describe, analyze, and understand the patterns of infectious
disease. During the COVID-19 pandemic, several works investigated the effects of non-
pharmaceutical measures (such as school closures, travel bans, and national lockdowns) on
the spread of COVID-19. Specifically, extensions of well-established Susceptible–Infectious–
Recovered (SIR) and Susceptible–Exposed–Infectious–Recovered (SEIR) models have been
proposed to model the spread of COVID-19 [36–38]. Such analyses are typically based on
complex compartmental models, which focus on individual-level dynamics.

This is a rather different approach as compared to our method, which uses the time
series modeling technique, as detailed described in Section 2. In particular, we defined a
general methodology to estimate and visualize differences in the spread of the pandemic
at the national level, with a predefined (but extensible) set of steps (i.e., data collection,
pre-processing, analysis, and visualization). In this way, data scientists and analysts can
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efficiently design and execute their applications dealing with epidemiological data. In fact,
an important advantage of the work is that the users can download the Python code to
reproduce the results presented in this paper and monitor the evolution of the pandemic.
Moreover, the code could be adapted without much work to monitor the COVID-19
pandemic in other regions, or for future outbreaks of other infectious diseases.

The potential limitations of our study are the following: (i) the data provided by the
Department of Civil Protection refer to the number of reported cases, which underestimates
the real number of positive cases in the population; (ii) the data do not allow us to ascertain
the date of onset of the infection, so the model will suffer from a delay relative to the trend
of the infections in the population; (iii) the SARIMA model used, contrary to SARIMAX,
does not take into account exogenous variables that could have effects both on the trend
and seasonality; (iv) our model is limited to short-term prediction because, with current
data, the only observable seasonality has a period of 7 days; (v) this model does not take
into account the effect of case spikes due to sudden mutations of the virus and further
research is needed to explore such effects on SARIMA model predictions.

Similar SARIMA models can be used for short-term predictions also in other regions
and/or countries [13,14,26] but the best model, optimizing Bayesian Information Criterion
(BIC) or Akaike Information Criterion (AIC), should be chosen based on available data.
A similar model is currently used on the website epidata.it to forecast the next 14 days of
new daily COVID-19 cases in Italy https://www.epidata.it/Italia/ARIMA.html, accessed
on 28 May 2022.

Thus, this study confirms that SARIMA models can be used for short-term predictions
(14 days) considering the circaseptan oscillations as seasonality, even at regional level.
The best model needs to be chosen via a grid-search to optimize BIC or AIC based on
available data.

5. Conclusions

Experimental evaluation, focusing on Calabria, showed a good predictive power for
out-of-sample predictions within one week (R2 > 0.7), whereas the predictions up to 14 days
should be treated with caution since the predictive power decreases with increasing out-of-
sample forecast periods. In future work, other research issues may be investigated. First,
we may identify potential exogenous variables to define a better performing SARIMAX
model on medium-to-long-term predictions. Second, we will extend the use of the model
at the province level, for quickly identifying the potential risk areas of a region, as well as
to explore the use of these models to predict the trend of other kinds of events (e.g., deaths
and hospitalizations).
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