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Background

In an era marked by unprecedented global health challenges,
measles virus (MeV) reemerges as a significant threat to public
health, despite being one of the most preventable diseases through
vaccination. Caused by an enveloped, single-stranded negative-
sense RNA virus of the genus Morbillivirus, measles is not only
highly contagious but also present in various strains, with at least
20 different genotypes identified across the globe [1]. Despite this
genetic diversity, there exists only one serotype of MeV, making its
widespread impact particularly daunting [1]. An infected individual
is likely to transmit the virus to over 90% of unprotected close
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mining, AI training, and similar technologies.
contacts, underscoring the disease's capability to trigger extensive
outbreaks [2]. Diagnosis of MeV is typically made by detecting the
virus in clinical specimens using laboratory tests such as the
reverse transcription polymerase chain reaction (RT-PCR) or sero-
logical assays [3]. Recently, the integration of this methodology
with whole genome sequencing has facilitated the identification of
a new MeV variant, highlighting mutations that might influence
transmission dynamics and immune responses [4]. This situation
further underscores the critical role of epidemiological surveil-
lance, not only for the continuous monitoring of the spread of
measles but also for the early detection of its variants. In this
context, the introduction of innovative surveillance methods, such
as wastewater analysis, becomes crucial. This method has shown
efficacy in tracking the presence of SARS-CoV-2 during the COVID-
19 pandemic [5,6] and offers a promising approach for surveilling
other infectious diseases, including measles. For example, research
conducted in the Netherlands used wastewater monitoring to track
poliovirus and measles, demonstrating its feasibility as an early
detection tool for these viruses [7].

The integration of advanced detection techniques, such as
wastewater analysis, into global epidemiological surveillance could
revolutionize our ability to respond quickly to public health
emergencies. This not only enhances our capacity for rapid and
targeted intervention but also sets a new standard in public health,
aiming for proactive rather than reactive protection of at-risk
communities.
Genetic variants of MeV

MeV possesses a genome consisting of single-stranded nega-
tive-sense RNA, which encodes for six structural and two
nonstructural proteins [8]. Among these proteins, MeV has two
envelope transmembrane glycoproteins: hemagglutinin and fusion.
Hemagglutinin binds to cellular receptors, while the fusion protein
is initially produced in a metastable state and facilitates the fusion
of the viral envelope with the target cell membrane [9]. Working
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together, hemagglutinin and fusion form the fusion complex, which
facilitates the viral entry into the host cells. In addition, the ribo-
nucleo-(N), phospho-(P), and large proteins constitute the ribo-
nucleoprotein complex, which is crucial for protecting genomic
RNA and facilitating its replication and transcription. The M protein
plays a role in coordinating the assembly of viral particles and
initiating their budding at the cell membrane. Two nonstructural
proteins, V and C, transcribed from the P gene, have roles that are
less well understood but are likely to function as virulence factors
within the host cell [10].

The genetic variability of the measles variant can decrease the
sensitivity of diagnostic tests due to mismatches between primers
or probes and the template [4]. In the 1990s, measles continued to
be a highly contagious disease caused by an RNA virus of the genus
Morbillivirus, characterized by a single serotype. Although genotype
A, isolated in 1954, serves as the reference strain, it is one among
multiple genotypes belonging to this serotype [11,12]. Thanks to
vaccination, there was a significant reduction in the incidence of
measles worldwide. TheWHO recognizes eight clades (AeH) of the
MeV, which are further subdivided into 24 genotypes: A, B1, B2, B3,
C1, C2, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, E, F, G1, G2, G3,
H1, and H2 [13]. As of today, three out of the 24 recognized geno-
types of the MeV are accountable for global outbreaks [14]. The H1
has been the prevalent lineage in China for several years [15] and
was detected for the last time in 2019 [16]. The B3, primarily found
in African nations where it originated, is now widespread globally,
and the D8, which emerged in Asia during the 1980s, is currently
spread worldwide [17]. Genotypes D8 and B3 have been respon-
sible for outbreaks occurring over the last years across Europe, Asia,
and North America [18]. In general, the D8 variant of measles is a
Fig. 1. Graphical representation of sequence alignment of
known genotype of the MeV, which may present mutations that
result in a slight loss of sensitivity to some molecular tests. How-
ever, the vaccine in use continues to be effective against this
variant.

Among the most recent developments, in 2023 the genetic
variant 8248 raised some concerns. It was linked to the lineage
MVs/Patan.IND/16.19, and, although originated in Tajikistan,
became dominant in Russia, where the number of measles cases
associated predominantly with the genetic variant 8248 notably
increased during 2022e2023 [19]. The persistence of this variant in
Russia is primarily sustained through the continuous importation
of measles cases from Tajikistan. Furthermore, isolated measles
cases connected with this variant were reported sporadically in
Kazakhstan, the Czech Republic, the United Kingdom, the United
States [19], Russia, Saudi Arabia, and Italy [4] in 2023. It was char-
acterized by three synonymous mutations resulting from the sub-
stitution of a Thymine with a Cytosine in the N-450 region in
positions 75, 78, and 81 (Fig. 1).

The last new measles D8 variant has been labelled variant 8491
[20]. This new variant is quite different from the previous variant
8248, with a mean genetic distance of 0.035 (±0.001) estimated in
the N-450 region, which is recommended by the WHO for diag-
nostic genotyping of MeV [3]. See Fig. 1 for polymorphic sites in the
N-450 region of 8248 and 8491 genetic variants.

Sequences were analysed using WebLogo (https://weblogo.
berkeley.edu/logo.cgi), illustrating levels of conservation and vari-
ation within this critical region of the MeV genome.

It is important to highlight that the emergence of new genetic
variants poses unique challenges that can affect the effectiveness of
vaccination. This genetic variability can impact various aspects of
the N-450 region of 8248 and 8491 genetic variants.
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the disease, including the host's immune response and suscepti-
bility to infection [21]. Certain mutations in the virus have been
observed to diminish the effectiveness of the immune response
induced by vaccination [21], potentially increasing susceptibility to
infection among vaccinated individuals and contributing to mea-
sles outbreaks even in communities with high vaccination
coverage. Moreover, the genetic variability of the virus can impact
the long-term effectiveness of vaccination, as continuously
evolving viral strains may necessitate periodic updates to vaccines
to ensure adequate protection against the disease [22]. Hence,
ongoing genetic surveillance of the MeV is essential, along with the
development of adaptive vaccination strategies. Addressing these
challenges requires maintaining high vaccination coverage rates
and implementing targeted and effective vaccination programmes.
In addition, coordinated global efforts are necessary to monitor and
respond to the genetic variability of the MeV, including research
and development of new vaccines and vaccination strategies [22].

Discussion

The resurgence of measles, a highly preventable disease, amidst
the backdrop of the COVID-19 pandemic, underscores the vital
importance of vaccination in public health strategies [23]. Vacci-
nation not only limits the spread of measles but also plays a crucial
role in preventing its reemergence [23]. The staggering potential for
an infected individual to transmit the virus to over 90% of unpro-
tected close contacts highlights the necessity of maintaining high
vaccination coverage rates. As such, enhancing vaccine accessibility
and addressing vaccine hesitancy are imperative to forestall the
resurgence of measles and to safeguard community health. More-
over, the innovative use of wastewater surveillance has emerged as
a powerful tool in the epidemiological toolkit [24,25], offering a
promising approach for early detection and surveillance of infec-
tious diseases, including SARS-CoV-2 [26].

The innovative use of wastewater surveillance, as described in
the study on the detection of MeV D8 genotype in Brussels
wastewater, is a significant example of how such methodology can
be crucial in public health strategies [27]. This technique made it
possible to identify the presence of the virus in an area where cases
had not been fully reported, thus suggesting more extensive
transmission of the virus than detected through traditional clinical
surveillance. Confirmation of the D8 genotype, corresponding to
strains circulating in Europe, was possible through the use of
advanced molecular techniques, such as real-time RT-PCR and
nested PCR, which improved the accuracy of virus detection and
genotyping from environmental samples. The importance of these
findings is two-fold: on the one hand, it provides valuable confir-
mation of virus circulation; on the contrary, it underscores the need
for standardized [28] testing methods to develop a comprehensive
understanding of the spread of infectious diseases and to formulate
coordinated intervention strategies.

By integrating wastewater surveillance into routine public
health practices, we can enhance our ability to monitor and
respond to infectious disease threats more effectively. Future in-
terventions should prioritize the expansion of vaccination pro-
grammes, the development of public health campaigns to combat
vaccine hesitancy, and the integration of advanced surveillance
methods like wastewater analysis into epidemic preparedness
strategies. These actions will collectively strengthen our resilience
against measles and other infectious diseases, contributing to a
safer, healthier future.

The concerted efforts to enhance vaccine uptake, coupled with
the strategic use of wastewater surveillance, are essential in the
fight against the reemergence of measles. These strategies not only
highlight innovation in public health surveillance but also
emphasize the critical role of vaccination in disease prevention. The
insights gleaned from the COVID-19 pandemic serve as a stark
reminder of the importance of global health vigilance and the need
for continued investment in vaccination and surveillance technol-
ogies. Together, these measures represent a comprehensive
approach to managing public health threats, ultimately leading to
the preservation of global health security and the well-being of
communities worldwide.
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